cmos

CMOS密码清除方法

半城伤御伤魂 提交于 2020-04-06 18:58:31
打开机箱,找到主板上的电池,将其与主板的连接断开(就是取下电池喽),此时CMOS将因断电而失去内部储存的一切信息。再将电池接通,合上机箱开机,由于CMOS已是一片空白,它将不再要求你输入密码,此时进入BIOS设置程序,选择主菜单中的"LOAD BIOS DEFAULT"(装入BIOS缺省值)或"LOAD SETUP DEFAULT"(装入设置程序缺省值)即可,前者以最安全的方式启动计算机,后者能使你的计算机发挥出较高的性能。 妙用DEBUG清除CMOS密码 如果你忘记了进入CMOS设置程序的密码,除了可以在主板上使用跳线短接清除的方法外,还可以使用软件清除的方法,下面就来介绍如何在DOS下清除CMOS密码的方法。 在DOS中提供了一个编辑器,就是DEBUG,这是一个非常实用的工具,启动方法是,在DOS命令提示符状态下输入命令:DEBUG、此时即可进入DEBUG编辑界面。 在命令符状态下输入命令后,重新启动电脑即可清除CMOS密码,下面给出五个清除CMOS密码的命令行。 方法一 -o 70 16 -o 71 16 -q 方法二 -o 70 11 -o 71 ff -q 方法三 -o 70 10 -o 71 10 -q 方法四 -o 70 23 -o 71 34 -q 方法五 -o 70 10 -o 71 ff -q 方法六 -o 70 90 -o 71 91 -q 来源:

计算机基础

亡梦爱人 提交于 2020-04-06 00:32:10
一、为何要学习计算机基础?       Python是一门编程语言,即通俗一点说就是语言。     程序用编程语言来写程序,最终开发的结果就是一个软件。 操作系统 是出现在硬件之上的,是用来 控制硬件的。 所以,我们开发时只需要 调用操作系统为我们提供的简单的接口 就可以了。    如上图所示,我把计算机的系统分为了上面三大块。 硬件,操作系统,应用程序 。 二、计算机硬件介绍 1. 硬件 的目的:为了运行软件给它的一些指令。我们可以优先从硬件中提取出这三个主要的东西,分别是: CPU,内存,硬盘 在计算机中,用来计算的是什么呢?当然是 CPU 了。多数CPU都有两种模式,即内核态与用户态。这里的即内核态与用户态将会在下面的内容中讲到。     CPU是人的大脑,负责运算        内存是人的记忆,负责临时存储        硬盘是人的笔记本,负责永久存储        输入设备是人的耳朵或眼睛,负责接受外部的信息传给CPU        以上所有的设备都通过总线连接,总线相当于人的神经 总线示意图 三、处理器(寄存器及内核态与用户态切换)     1.计算机的大脑是CPU,它从内存中取指令-▶解码-▶执行,然后在取指令,解码,执行,周而复始,直至整个程序被执行完成。    2. 寄存器是一个存储设备, 最快的一种存储设备 就是寄存器。 3.寄存器的分类      

数码相机常用CCD/CMOS尺寸对比

こ雲淡風輕ζ 提交于 2020-03-28 14:09:20
  数码相机的关键元件CCD或CMOS又称为“影像传感器”,其作用相当于感光胶片。CCD尺寸越大,采集光线的效果越好,画面记录的信息就越多,保留的细节也就越丰富,所以图像更完美漂亮。   CCD尺寸的大小与像素的多少有一定的联系,但是也不尽然。专业数码单反尼康的D2Hs,别看它像素只有410万,可CCD的尺寸却是23.5×15.7mm;而柯达的DX7590数码相机虽拥有500万像素,但CCD尺寸只有5.38×4.39mm,两块CCD面积相差近10倍。可以肯定地说,D2Hs拍出的图像质量要比柯达DX7590拍出的画面要好得多,而且图像越放大越能证明这一点。所以购买数码相机时,千万不要盲目追求高像素,还要看看它的CCD尺寸有多大!   目前CCD、CMOS最大尺寸(除120专用的数码后背)与35毫米传统胶片的底片一致,即24×36mm。所以又称为“全画幅”CCD。   大尺寸的CCD制作成本非常高,已经成为了数码相机(主要是数码单反相机)价格居高不下的主要颈瓶。   CCD和CMOS在制造上的主要区别主要是CCD是集成在半导体单晶材料上,而CMOS是集成在被称为金属氧化物的半导体材料上,工作原理没有本质的区别,都是利用感光二极管(photodiode)进行光电转换,这种转换的原理与太阳能电子计算机的太阳能电池效应相近,光线越强、电力越强;反之,光线越弱、电力也越弱

CCD和CMOS的差别

我的未来我决定 提交于 2020-03-28 12:07:58
单从感光器电子技术上来说,CCD比CMOS更先进,理论成像上有优势,但是最近几年CMOS却发展更好,使得很多高端数码单反采用CMOS传感器,下面来看看CCD和CMOS的技术知识: CCD和CMOS传感器是目前最常见的数字图像传感器,广泛应用于数码相机、数码摄像机、照相手机和摄像头等产品上。两者在结构、性能和技术上均不尽相同,在此我将两者作一个简单的比较,使广大读者对CCD和CMOS能有一个比较初步的认识,在选购相关产品时也能做到心中有数。 CCD与CMOS传感器的结构比较 CCD(Charge Coupled Device),即“电荷耦合器件”,是一种感光半导体芯片,用于捕捉图形,但CCD没有能力记录图形数据,也没有能力永久保存,所有图形数据都会不停留地送入一个模数转换器,一个信号处理器以及一个存储设备。1970美国贝尔实验室发明了CCD。二十年后,人们利用这一技术制造了数码相机,将影像处理行业推进到一个全新领域。 CMOS(Complementary Metal Oxide Semiconductor),即“互补金属氧化物半导体”。它是计算机系统内一种重要的芯片,保存了系统引导所需的大量资料。有人发现,将CMOS加工也可以作为数码相机中的感光传感器,其便于大规模生产和成本低廉的特性是商家们梦寐以求的。 CCD和CMOS在制造上的主要区别主要是CCD是集成在半导体单晶材料上

相机的传感器

无人久伴 提交于 2020-03-06 16:37:15
提到数码相机,不得不说到就是数码相机的心脏—— 感光元件 。与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码相机的“胶卷”就是其成像 感光元件 ,而且是与相机一体的,是数码相机的心脏。感光器是数码相机的核心,也是最关键的技术。数码相机的发展道路,可以说就是感光器的发展道路。目前数码相机的核心成像部件有两种:一种是广泛使用的CCD(电荷藕合)元件;另一种是CMOS(互补金属氧化物导体)器件。    感光元件 工作原理   电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的 半导体材料 制成,能把光线转变成电荷,通过 模数转换器 芯片转换成数字信号,数字信号经过压缩以后由相机内部的 闪速存储器 或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。   CCD和传统底片相比,CCD 更接近于人眼对视觉的工作方式。只不过,人眼的视网膜是由负责光强度感应的杆细胞和色彩感应的锥细胞,分工合作组成视觉感应。 CCD经过长达35年的发展,大致的形状和运作方式都已经定型。CCD 的组成主要是由一个类似马赛克的网格、

TTL和CMOS有什么区别?

删除回忆录丶 提交于 2020-02-23 15:16:10
谈谈TTL和CMOS电平(转贴) TTL——Transistor-Transistor Logic HTTL——High-speed TTL LTTL——Low-power TTL STTL——Schottky TTL LSTTL——Low-power Schottky TTL ASTTL——Advanced Schottky TTL ALSTTL——Advanced Low-power Schottky TTL FAST(F)——Fairchild Advanced schottky TTL CMOS——Complementary metal-oxide-semiconductor HC/HCT——High-speed CMOS Logic(HCT与TTL电平兼容) AC/ACT——Advanced CMOS Logic(ACT与TTL电平兼容)(亦称ACL) AHC/AHCT——Advanced High-speed CMOS Logic(AHCT与TTL电平兼容) FCT——FACT扩展系列,与TTL电平兼容 FACT——Fairchild Advanced CMOS Technology 1,TTL电平: 输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平 是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0

玩转Zynq连载40——[ex59] 基于Zynq的双目视觉图像采集显示实例

久未见 提交于 2020-02-20 17:58:56
特权同学玩转Zynq连载40——[ex59] 基于Zynq的双目视觉图像采集显示实例 1 CMOS摄像头应用背景与驱动原理 CMOS摄像头(CMOS Sensor)是一种采用CMOS图像传感器的摄像头。摄像头主要有两类,CMOS和CCD。CMOS一般应用在普通数码设备中,CCD一般应用在高档数码设备中,它们都是光学成像,但CCD比CMOS单位成像的效果要好。CCD镜头比CMOS的颜色还原更好,并且分辨率更高。 CCD和CMOS在制造上的主要区别是,CCD是集成在半导体单晶材料上,而CMOS是集成在被称做金属氧化物的半导体材料上,但工作原理没有本质的区别。在成像方面,CCD的成像通透性、明锐度都很不错,色彩还原、曝光可以保证基本准确。而CMOS的产品往往通透性一般,对实物的色彩还原能力偏弱,曝光也都不太好。由于CMOS自身的物理特性,其成像质量和CCD还是有一定距离的。CCD制造工艺较复杂,掌握CCD技术的厂商并不多,采用CCD摄像头的价格相对也比较昂贵。但随着制造工艺的不断改进,目前CMOS和CCD的实际成像效果的差异在逐渐减小。加之CMOS的制造成本和功耗都要比CCD低不少,因此很多摄像头生产厂商更趋向于采用CMOS感光元件。正是由于低廉的价格以及高度的整合性,使得CMOS摄像头得到了更广泛的应用。 CCD是目前比较成熟的成像器件,CMOS被看作未来的成像器件

做成像的你不能不了解的真相8-如影随形的噪声(上)

寵の児 提交于 2020-02-13 20:32:46
锵锵锵!新一期的真相系列又和大家见面啦~~~ 在之前的文章中,我们向大家介绍了信噪比及其计算方法,还记得这个公式么? 大家都想要获得信噪比高的图像,但是噪声就像一个如影随形的幽灵,总是出来捣乱。尤其在一些高端显微成像应用中,如转盘式共聚焦、TIRF、单分子荧光成像等,由于信号弱,这时更低的噪声尤为重要。俗话说,知己知彼,方能百战百胜。在接下来的两期文章中,小编就来和大家详细的聊一聊噪声——这个我们无法摆脱的讨厌鬼。 先来明确一下噪声的概念。实际生活中的噪声多种多样,比如声音的噪声、电信号传输的噪声以及相机的噪声等等。噪声是围绕着信号上下波动的不确定性,从统计学上来说,就是标准差。让我们先来看看在成像过程中都会遇到哪些“不确定性”。 散粒噪声 (Photo shot noise) 入射到相机的光子在硅层内被转换成光电子,由于光信号的量子特性,相机捕获到的信号存在一定的不确定性。这就是 散粒噪声。 大家还记得在信噪比1中我们说过它的值等于信号的平方根: 这里要告诉大家的坏消息是:散粒噪声的存在是一种物理现象,是不能通过相机的设计来减少的,但它却是信噪比中重要的影响因素。想象一下,如果有一个没有任何噪声的理想相机,它拍摄的图像信噪比也不是无穷大的。其图像的信噪比随信号强度变化的曲线如下。 读出噪声 (Read noise) 读出噪声,顾名思义就是相机在读出信号时产生的噪声

图像传感器与信号处理——详解图像传感器噪声

▼魔方 西西 提交于 2020-02-12 16:57:16
图像传感器与信号处理——详解图像传感器噪声 图像传感器与信号处理——详解图像传感器噪声 1 图像传感器噪声分类 2 图像传感器噪声描述 3 图像传感器噪声原理 3.1 热噪声(Thermal Noise) 3.2 散粒噪声(Shot Noise) 3.3 1/f噪声(Flicker Noise) 3.4 重置噪声(Reset Noise) 3.5 本底噪声(Noise Floor) 3.6 固定模式噪声(Fixed Pattern Noise) 3.7 光照响应非均匀性 4. 图像传感器降噪方法 4.1 热噪声降噪 4.2 散粒噪声降噪 4.3 1/f噪声降噪 4.4 CDS和DDS噪声抑制电路 图像传感器与信号处理——详解图像传感器噪声 本文主要是结合《Noise in Image Sensors》和《Image Sensors And Signal Processing for Digital Still Cameras》两本参考文献对图像传感器噪声进行总结,值得注意的是,本文介绍的图像传感器噪声,并不是图像噪声。图像传感器噪声的讨论中涉及到更多硬件等基础知识,而图像噪声产生的一个很重要的源头正是图像噪声, 只有彻底了解噪声的来源后才能更好地考虑如何去消除噪声 。此外,信号电荷数量随光照强度的响应如下图所示: 其中横坐标是光照强度,纵坐标是信号电荷数量,由图可知

CMOS研究框架

扶醉桌前 提交于 2020-01-31 00:44:50
CMOS Image Sensor (CIS)行业的特点: 1、高弹性:4800万像素,6400万像素产品切入主摄像头鲜有竞争对手的蓝海市场,产品一旦放量,弹性巨大。 2、深壁垒:CMOS图像传感器=模拟电路+数字电路,需要一家公司同时掌握两种芯片设计能力,具备可积累的护城河。 3、长周期:摄像头CIS芯片作为单一品类,永远会存在,只是性能从2M/8M,到12M/13M16M,再到主摄48M都是长生命周期产品。 同样基于轻资产+高弹性的世界级芯片设计标的:韦尔、汇顶、圣邦、兆易、君正、澜起。 来源: CSDN 作者: jiazhen. 链接: https://blog.csdn.net/jiazhen/article/details/104117559