binning

When using cut in a pandas dataframe to bin it, why is the binning not properly done?

为君一笑 提交于 2021-02-19 07:40:29
问题 I have a dataframe that I want to bin (i.e., group into sub-ranges) by one column, and take the mean of the second column for each of the bins: import pandas as pd import numpy as np data = pd.DataFrame(columns=['Score', 'Age']) data.Score = [1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 2, 1, 1, 2, 1, 0, 1, 1, -1, 1, 0, 1, 1, 0, 1, 0, -2, 1] data.Age = [29, 59, 44, 52, 60, 53, 45, 47, 57, 54, 35, 32, 48, 31, 49, 43, 67, 32, 31, 42, 37, 45, 52, 59, 56, 57, 48, 45, 56, 31] _, bins = np.histogram(data

how can i call optbinning module get results of all varible binning

六眼飞鱼酱① 提交于 2021-02-11 06:11:59
问题 Now i use optbinning module to binning all logstic regression modeling varible. however optbinning module need to use only one variable ,such as variable = "REGION_POPULATION_RELATIVE" x = df[variable].values y = df.TARGET.values from optbinning import OptimalBinning optb = OptimalBinning(name=variable, dtype="numerical", solver="ls", max_n_prebins=100, min_prebin_size=0.001, time_limit=50) optb.fit(x, y) how can i use loop to get binning result for all variable ? i try to codeing variable

how can i call optbinning module get results of all varible binning

元气小坏坏 提交于 2021-02-11 06:09:57
问题 Now i use optbinning module to binning all logstic regression modeling varible. however optbinning module need to use only one variable ,such as variable = "REGION_POPULATION_RELATIVE" x = df[variable].values y = df.TARGET.values from optbinning import OptimalBinning optb = OptimalBinning(name=variable, dtype="numerical", solver="ls", max_n_prebins=100, min_prebin_size=0.001, time_limit=50) optb.fit(x, y) how can i use loop to get binning result for all variable ? i try to codeing variable

Python: binned_statistic_2d mean calculation ignoring NaNs in data

a 夏天 提交于 2021-02-10 06:27:01
问题 I am using scipy.stats.binned_statistic_2d to bin irregular data onto a uniform grid by finding the mean of points within every bin. x,y = np.meshgrid(sort(np.random.uniform(0,1,100)),sort(np.random.uniform(0,1,100))) z = np.sin(x*y) statistic, xedges, yedges, binnumber = sp.stats.binned_statistic_2d(x.ravel(), y.ravel(), values=z.ravel(), statistic='mean',bins=[np.arange(0,1.1,.1), np.arange(0,1.1,.1)]) plt.figure(1) plt.pcolormesh(x,y,z, vmin = 0, vmax = 1) plt.figure(2) plt.pcolormesh

Python: binned_statistic_2d mean calculation ignoring NaNs in data

守給你的承諾、 提交于 2021-02-10 06:26:09
问题 I am using scipy.stats.binned_statistic_2d to bin irregular data onto a uniform grid by finding the mean of points within every bin. x,y = np.meshgrid(sort(np.random.uniform(0,1,100)),sort(np.random.uniform(0,1,100))) z = np.sin(x*y) statistic, xedges, yedges, binnumber = sp.stats.binned_statistic_2d(x.ravel(), y.ravel(), values=z.ravel(), statistic='mean',bins=[np.arange(0,1.1,.1), np.arange(0,1.1,.1)]) plt.figure(1) plt.pcolormesh(x,y,z, vmin = 0, vmax = 1) plt.figure(2) plt.pcolormesh

Formula for Google Charts histogram

最后都变了- 提交于 2021-02-05 08:26:51
问题 What formula does Google Charts use to construct its histogram? For example, does it use Sturge's rule? Doane's rule? Scott's rule? etc. Is there any documentation on how it constructs it default bin size, min, and max? Here is a link to the Histogram page for Google Charts. Google Charts automatically chooses the number of bins for you. All bins are equal width and have a height proportional to the number of data points in the bin. In other respects, histograms are similar to column charts.

Python: Binning based on 2 columns in Pandas

僤鯓⒐⒋嵵緔 提交于 2021-02-05 06:11:11
问题 Looking for a quick and elegant way to bin based on 2 columns in Pandas. Here's my data frame filename height width 0 shopfronts_23092017_3_285.jpg 750.0 560.0 1 shopfronts_200.jpg 4395.0 6020.0 2 shopfronts_25092017_eateries_98.jpg 414.0 621.0 3 shopfronts_101.jpg 480.0 640.0 4 shopfronts_138.jpg 3733.0 8498.0 5 shopfronts_25092017_eateries_95.jpg 187.0 250.0 6 shopfronts_25092017_neon_33.jpg 100.0 200.0 7 shopfronts_322.jpg 682.0 1024.0 8 shopfronts_171.jpg 800.0 600.0 9 shopfronts_23092017

Python: Binning based on 2 columns in Pandas

末鹿安然 提交于 2021-02-05 06:11:05
问题 Looking for a quick and elegant way to bin based on 2 columns in Pandas. Here's my data frame filename height width 0 shopfronts_23092017_3_285.jpg 750.0 560.0 1 shopfronts_200.jpg 4395.0 6020.0 2 shopfronts_25092017_eateries_98.jpg 414.0 621.0 3 shopfronts_101.jpg 480.0 640.0 4 shopfronts_138.jpg 3733.0 8498.0 5 shopfronts_25092017_eateries_95.jpg 187.0 250.0 6 shopfronts_25092017_neon_33.jpg 100.0 200.0 7 shopfronts_322.jpg 682.0 1024.0 8 shopfronts_171.jpg 800.0 600.0 9 shopfronts_23092017

PowerBI Dynamic binning (ranges change) based on value of measure

送分小仙女□ 提交于 2021-01-28 02:49:49
问题 I’m trying to represent some continuous data via binning. Continuous weighting data of an area should be binned as: VeryHigh, High, Low, VeryLow. The weighting values are based on an interaction between certain Types of events grouped by an Area and so can change depending on the Type selected by the report user. I have included some sample data below and an outline of what’s been done so far. Start with five sets of area data (A-E). Within each is one or more incident Types. Each incident

How to align two numpy histograms so that they share the same bins/index, and also transform histogram frequencies to probabilities?

天涯浪子 提交于 2020-12-13 04:25:38
问题 How to convert two datasets X and Y to histograms whose x-axes/index are identical, instead of the x-axis range of variable X being collectively lower or higher than the x-axis range of variable Y (like how the code below generates)? I would like the numpy histogram output values to be ready to plot in a shared histogram-plot afterwards. import numpy as np from numpy.random import randn n = 100 # number of bins #datasets X = randn(n)*.1 Y = randn(n)*.2 #empirical distributions a = np