标准差系数

描述性统计

♀尐吖头ヾ 提交于 2019-12-04 04:43:21
数据的集中趋势 众数 众数是样本观测值在频数分布表中频数最多的那一组的组中值,主要应用于大面积普查研究之中。 众数是在一组数据中,出现次数最多的数据,是一组数据中的原数据,而不是相应的次数。 一组数据中的众数不止一个,如数据2、3、-1、2、1、3中,2、3都出现了两次,它们都是这组数据中的众数。 一般来说,一组数据中,出现次数最多的数就叫这组数据的众数。 例如: 1,2,3,3,4的众数是3。 但是,如果有两个或两个以上个数出现次数都是最多的,那么这几个数都是这组数据的众数。 1,2,2,3,3,4的众数是2和3。 还有,如果所有数据出现的次数都一样,那么这组数据没有众数。 1,2,3,4,5没有众数。 计算方法: 分位数 分位数(Quantile),亦称分位点,是指将一个 随机变量 的 概率分布 范围分为几个等份的数值点,常用的有 中位数 (即二分位数)、 四分位数 、 百分位数 等。 ​ 分位数指的就是连续分布函数中的一个点,这个点对应概率p。若 概率 0<p<1, 随机变量 X或它的 概率分布 的分位数Za,是指满足条件p(X≤Za)=α的实数 常见分类 二分位数 对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,则中位数不唯一,通常取最中间的两个数值的平均数作为中位数,即二分位数。 一个数集中最多有一半的数值小于中位数

数学基础之方差、标准差和协方差三者之间的定义与计算

匿名 (未验证) 提交于 2019-12-03 00:27:02
理解三者之间的区别与联系,要从定义入手,一步步来计算,同时也要互相比较理解,这样才够深刻。 方差 方差是各个数据与平均数之差的平方的平均数。在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义。 标准差 方差开根号。 协方差 在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 可以通俗的理解为:两个变量在变化过程中是否同向变化?还是反方向变化?同向或反向程度如何? 你变大,同时我也变大,说明两个变量是同向变化的,这是协方差就是正的。 你变大,同时我变小,说明两个变量是反向变化的,这时协方差就是负的。 如果我是自然人,而你是太阳,那么两者没有相关关系,这时协方差是0。 从数值来看,协方差的数值越大,两个变量同向程度也就越大,反之亦然。 可以看出来,协方差代表了两个变量之间的是否同时偏离均值,和偏离的方向是相同还是相反。 公式:如果有X,Y两个变量,每个时刻的“X值与其均值之差”乘以“Y值与其均值之差”得到一个乘积,再对这每时刻的乘积求和并求出均值,即为协方差。 方差,标准差与协方差之间的联系与区别: 1. 方差和标准差都是对一组(一维)数据进行统计的,反映的是一维数组的离散程度;而协方差是对2组数据进行统计的