备择假设

MATLAB概率统计函数(4)

白昼怎懂夜的黑 提交于 2019-12-24 12:06:00
4.8 假设检验 4.8.1 已知,单个正态总体的均值μ的假设检验(U检验法) 函数 ztest 格式 h = ztest(x,m,sigma) % x为正态总体的样本,m为均值μ0,sigma为标准差,显著性水平为0.05(默认值) h = ztest(x,m,sigma,alpha) % 显著性水平为 alpha [h,sig,ci,zval] = ztest(x,m,sigma,alpha,tail) %sig为观察值的概率,当sig为小概率时则对原假设提出质疑,ci为真正均值μ的 1- alpha置信区间,zval为统计量的值。 说明 若h=0 ,表示在显著性水平 alpha下,不能拒绝原假设; 若h=1 ,表示在显著性水平 alpha下,可以拒绝原假设。 原假设:, 若tail=0 , 表示备择假设:(默认,双边检验); tail=1,表示备择假设:(单边检验); tail=-1 ,表示备择假设: (单边检验)。 例 4-74 某车间用一台包装机包装葡萄糖,包得的袋装糖重是一个随机变量,它服从正态分布。当机器正常时,其均值为0.5公斤,标准差为0.015。某日开工后检验包装机是否正常,随机地抽取所包装的糖 9 袋,称得净重为(公斤) 0.497, 0.506, 0.518, 0.524, 0.498, 0.511, 0.52, 0.515, 0.512 问机器是否正常?

统计学基础知识

僤鯓⒐⒋嵵緔 提交于 2019-12-01 17:06:17
为理解下面的知识需要先区分好下面几个概念: 总体均值: \(u\) 总体标准差: \(σ\) 样本均值: \(u'\) 样本标准差: \(σ'\) 样本中符合条件A的占比: \(p'\) 是样本大小: \(n\) 总体大小: \(N\) 抽样 数据分析中,虽然数据越多越齐越好,可是受限于各类因素的制约,我们并不能获取全部的数据。比如Excel的性能限制,比如数据库不支持大文件导出、或者是无法全量进行的用户调研等。 抽样是一种应对方法,通过样本来推断总体,抽样结果提供的仅仅是相应总体特征的估计,「估计」这一点很重要。 抽样有很多方式,样本首要满足随机性。比如进行社会访谈,你不能只选择商场人流区,因为采访到的人群明显是同一类人群,反而会遗漏郊区和乡镇的人群,遗漏宅男,遗漏老人。 互联网产品中,抽样也无处不在,大名鼎鼎的AB测试就是一种抽样,选取一部分人群验证运营策略或者产品改进。通常筛选用户ID末尾的数字,比如末尾选择0~4,于是抽样出了50%的用户,这既能保证随机性,也能保证控制性。 毕竟抽样的目的是验证和检验,需要始终保证用户群体的完全隔离,不能用户一会看到老界面,一会看到改进后的新界面。以上也适用于推荐算法的冠军挑战,用户分群等。 至于放回抽样,分层抽样,在互联网的数据分析中用不太到,这里就略过了。 点估计 设总体 X 的分布函数形式已知, 但它的一个或多个参数为未知,