时间序列分析算法
简介 在商业应用中,时间是最重要的因素,能够提升成功率。然而绝大多数公司很难跟上时间的脚步。但是随着技术的发展,出现了很多有效的方法,能够让我们预测未来。不要担心,本文并不会讨论时间机器,讨论的都是很实用的东西。 本文将要讨论关于预测的方法。有一种预测是跟时间相关的,而这种处理与时间相关数据的方法叫做 时间序列模型 。这个模型能够在与时间相关的数据中,寻到一些隐藏的信息来辅助决策。 当我们处理时序序列数据的时候,时间序列模型是非常有用的模型。大多数公司都是基于时间序列数据来分析第二年的销售量,网站流量,竞争地位和更多的东西。然而很多人并不了解的时间序列分析这个领域。 所以,如果你不了解时间序列模型。这篇文章将会想你介绍时间序列模型的处理步骤以及它的相关技术。 本文包含的内容如下所示: 目录 * 1、时间序列模型介绍 * 2、使用R语言来探索时间序列数据 * 3、介绍ARMA时间序列模型 * 4、ARIMA时间序列模型的框架与应用 让我们开始吧 1、时间序列模型介绍 Let’s begin。本节包括平稳序列,随机游走,Rho系数,Dickey Fuller检验平稳性。如果这些知识你都不知道,不用担心-接下来这些概念本节都会进行详细的介绍,我敢打赌你很喜欢我的介绍的。 Return Top 平稳序列 判断一个序列是不是平稳序列有三个评判标准: 1. 均值 ,是与时间t 无关的常数。下图