Aardvark

Importing DLL into Python 3 without imp.load_dynamic

匿名 (未验证) 提交于 2019-12-03 00:56:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: Goal I am trying to add Windows support for Python Interface to Total Phase Aardvark that is currently Linux only . This is a wrapper for a device whose available interface is only a .so (Linux) or .dll (Windows) closed source binary. However, it was made as a Python package (not sure if that is the right term) rather than just standard C interface that your would load with ctypes. File Structure In this project, we have an ext folder that is the same level as the script doing the importing, with 32/64 libraries for Linux and Windows (added

pandas入门05---数据清洗

僤鯓⒐⒋嵵緔 提交于 2019-11-29 09:39:09
01 处理缺失值 pandas使用浮点值NaN(Not a Number)表示缺失值。我们称NaN为容易检测到的标识值: import pandas as pd import numpy as np string_data = pd.Series(['aardvark', 'artichoke', np.nan, 'avocado']) print(string_data) print(string_data.isnull()) 在pandas中,将缺失值标为NA,意思是not available(不可用)。 NA数据可以是不存在的数据或者是存在但不可观察的数据。Python内建的None值在对象数组中也被当做NA处理。 string_data[0] = None print(string_data.isnull()) 01-01 过滤缺失值 dropna方法在过滤缺失值时非常有用。 在Series中使用dropna,会返回Series中所有非空数据及其索引值。 data = pd.Series([1,NA, 3.5, NA, 7]) print(data.dropna()) 在处理DataFrame对象时,可能需要删除全部为NA或包含NA的行或列。 dropna默认情况下会删除包含缺失值的行: data1 = pd.DataFrame([[1. ,6.5, 3.],[1., NA