Airbnb Airflow using all system resources

后端 未结 7 1879
温柔的废话
温柔的废话 2021-02-03 19:48

We\'ve set up Airbnb/Apache Airflow for our ETL using LocalExecutor, and as we\'ve started building more complex DAGs, we\'ve noticed that Airflow has starting usin

相关标签:
7条回答
  • 2021-02-03 19:55

    I tried to run Airflow on a AWS t2.micro instance (1vcpu, 1gb of memory, eligible for free tier), and had the same issue : the worker consumed 100% of the cpu and consumed all available memory.

    The EC2 instance was totally stuck and unusable, of course Airflow didn't working.

    So I created a 4GB swap file using the method described here. With the swap, no more issues, Airflow was fully functionnal. Of course, with only one vcpu, you cannot expect incredible performances, but it runs.

    0 讨论(0)
  • 2021-02-03 19:56

    the key point is HOW to processing dag files. reduce cpu usage from 80%+ to 30% for scheduler on a 8-core server, i have updated 2 config key,

    min_file_process_interval from 0 to 60.
    max_threads from 1000 to 50. 
    
    0 讨论(0)
  • 2021-02-03 20:01

    Try to change the below config in airflow.cfg

    # after how much time a new DAGs should be picked up from the filesystem
    min_file_process_interval = 0
    
    # How many seconds to wait between file-parsing loops to prevent the logs from being spammed.
    min_file_parsing_loop_time = 1
    
    0 讨论(0)
  • 2021-02-03 20:01

    I have faced the same issue deploying airflow on EKS.Its resolved by updating max_threads to 128 in airflow config.

    max_threads: Scheduler will spawn multiple threads in parallel to schedule dags. This is controlled by max_threads with default value of 2. User should increase this value to a larger value (e.g numbers of cpus where scheduler runs - 1) in production.

    From here https://airflow.apache.org/docs/stable/faq.html

    0 讨论(0)
  • 2021-02-03 20:07

    I have also tried everything I could to get the CPU usage down and Matthew Housley's advice regarding MIN_FILE_PROCESS_INTERVAL was what did the trick.

    At least until airflow 1.10 came around... then the CPU usage went through the roof again.

    So here is everything I had to do to get airflow to work well on a standard digital ocean droplet with 2gb of ram and 1 vcpu:

    1. Scheduler File Processing

    Prevent airflow from reloading the dags all the time and set: AIRFLOW__SCHEDULER__MIN_FILE_PROCESS_INTERVAL=60

    2. Fix airflow 1.10 scheduler bug

    The AIRFLOW-2895 bug in airflow 1.10, causes high CPU load, because the scheduler keeps looping without a break.

    It's already fixed in master and will hopefully be included in airflow 1.10.1, but it could take weeks or months until its released. In the meantime this patch solves the issue:

    --- jobs.py.orig    2018-09-08 15:55:03.448834310 +0000
    +++ jobs.py     2018-09-08 15:57:02.847751035 +0000
    @@ -564,6 +564,7 @@
    
             self.num_runs = num_runs
             self.run_duration = run_duration
    +        self._processor_poll_interval = 1.0
    
             self.do_pickle = do_pickle
             super(SchedulerJob, self).__init__(*args, **kwargs)
    @@ -1724,6 +1725,8 @@
                 loop_end_time = time.time()
                 self.log.debug("Ran scheduling loop in %.2f seconds",
                                loop_end_time - loop_start_time)
    +            self.log.debug("Sleeping for %.2f seconds", self._processor_poll_interval)
    +            time.sleep(self._processor_poll_interval)
    
                 # Exit early for a test mode
                 if processor_manager.max_runs_reached():
    

    Apply it with patch -d /usr/local/lib/python3.6/site-packages/airflow/ < af_1.10_high_cpu.patch;

    3. RBAC webserver high CPU load

    If you upgraded to use the new RBAC webserver UI, you may also notice that the webserver is using a lot of CPU persistently.

    For some reason the RBAC interface uses a lot of CPU on startup. If you are running on a low powered server, this can cause a very slow webserver startup and permanently high CPU usage.

    I have documented this bug as AIRFLOW-3037. To solve it you can adjust the config:

    AIRFLOW__WEBSERVER__WORKERS=2 # 2 * NUM_CPU_CORES + 1
    AIRFLOW__WEBSERVER__WORKER_REFRESH_INTERVAL=1800 # Restart workers every 30min instead of 30seconds
    AIRFLOW__WEBSERVER__WEB_SERVER_WORKER_TIMEOUT=300 #Kill workers if they don't start within 5min instead of 2min
    

    With all of these tweaks my airflow is using only a few % of CPU during idle time on a digital ocean standard droplet with 1 vcpu and 2gb of ram.

    0 讨论(0)
  • 2021-02-03 20:09

    For starters, you can use htop to monitor and debug your CPU usage.

    I would suggest that you run webserver and scheduler processes on the same docker container which would reduce the resources required to run two containers on a ec2 t2.medium. Airflow workers need resources for downloading data and reading it in memory but webserver and scheduler are pretty lightweight processes. Makes sure when you run webserver you are controlling the number of workers running on the instance using the cli.

    airflow webserver [-h] [-p PORT] [-w WORKERS]
                             [-k {sync,eventlet,gevent,tornado}]
                             [-t WORKER_TIMEOUT] [-hn HOSTNAME] [--pid [PID]] [-D]
                             [--stdout STDOUT] [--stderr STDERR]
                             [-A ACCESS_LOGFILE] [-E ERROR_LOGFILE] [-l LOG_FILE]
                             [-d]
    
    0 讨论(0)
提交回复
热议问题