Forword: I provide a reasonably satisfactory answer to my own question. I understand this is acceptable practice. Naturally my hope is to invite suggestions and improvements.
@walts answer should remain the winner but while implementing his solution, I gave it a tidy update.
library(tidyverse)
set.seed(2345)
# fake data
raw_data <-
tibble(
date = as.Date("2020-01-01") + (1:40),
a = 95 + cumsum(runif(40, min = -20, max = 20)),
b = 55 + cumsum(runif(40, min = -1, max = 1))
)
# the steps
# the 'y' + 'min_line' + 'group' is the right granularity (by date) to
# create 2 separate ribbons
df <-
raw_data %>%
# find min of the two columns
mutate(min_line = pmin(a, b)) %>%
pivot_longer(c(a, b), names_to = "group", values_to = "y") %>%
print()
# the result
ggplot(data = df, aes(x = date, fill = group)) +
geom_ribbon(aes(ymax = y, ymin = min_line)) +
theme_classic()
Perhaps I'm not understanding your full problem but it seems that a fairly direct approach would be to define a third line as the minimum of the two time series at each time point. geom_ribbon
is then called twice (once for each unique value of Asset
) to plot the ribbons formed by each of the series and the minimum line. Code could look like:
set.seed(123456789)
df <- data.frame(
Date = seq.Date(as.Date("1950-01-01"), by = "1 month", length.out = 12*10),
Stocks = 100 + c(0, cumsum(runif(12*10-1, -30, 30))),
Bonds = 100 + c(0, cumsum(runif(12*10-1, -5, 5))))
library(reshape2)
library(ggplot2)
df <- cbind(df,min_line=pmin(df[,2],df[,3]) )
df <- melt(df, id.vars=c("Date","min_line"), variable.name="Assets", value.name="Prices")
sp <- ggplot(data=df, aes(x=Date, fill=Assets))
sp <- sp + geom_ribbon(aes(ymax=Prices, ymin=min_line))
sp <- sp + scale_fill_manual(values=c(Stocks="darkred", Bonds="darkblue"))
sp <- sp + ggtitle("Bonds Versus Stocks (Fake Data!)")
plot(sp)
This produces following chart:
I actually had the same question some time ago and here is the related post. It defines a function finding the intersections between two lines and an other function which takes a dataframe in input and then colors the space between the two columns using matplot
and polygon
EDIT
Here is the code, modified a bit to allow the last polygon to be plotted
set.seed(123456789)
dat <- data.frame(
Date = seq.Date(as.Date("1950-01-01"), by = "1 month", length.out = 12*10),
Stocks = 100 + c(0, cumsum(runif(12*10-1, -30, 30))),
Bonds = 100 + c(0, cumsum(runif(12*10-1, -5, 5))))
intersects <- function(x1, x2) {
seg1 <- which(!!diff(x1 > x2)) # location of first point in crossing segments
above <- x2[seg1] > x1[seg1] # which curve is above prior to crossing
slope1 <- x1[seg1+1] - x1[seg1]
slope2 <- x2[seg1+1] - x2[seg1]
x <- seg1 + ((x2[seg1] - x1[seg1]) / (slope1 - slope2))
y <- x1[seg1] + slope1*(x - seg1)
data.frame(x=x, y=y, pindex=seg1, pabove=(1:2)[above+1L])
# pabove is greater curve prior to crossing
}
fillColor <- function(data, addLines=TRUE) {
## Find points of intersections
ints <- intersects(data[,2], data[,3]) # because the first column is for Dates
intervals <- findInterval(1:nrow(data), c(0, ints$x))
## Make plot
matplot(data, type="n", col=2:3, lty=1, lwd=4,xaxt='n',xlab='Date')
axis(1,at=seq(1,dim(data)[1],length.out=12),
labels=data[,1][seq(1,dim(data)[1],length.out=12)])
legend("topright", c(colnames(data)[2], colnames(data)[3]), col=3:2, lty=1, lwd=2)
## Draw the polygons
for (i in seq_along(table(intervals))) {
xstart <- ifelse(i == 1, 0, ints$x[i-1])
ystart <- ifelse(i == 1, data[1,2], ints$y[i-1])
xend <- ints$x[i]
yend <- ints$y[i]
x <- seq(nrow(data))[intervals == i]
polygon(c(xstart, x, xend, rev(x)), c(ystart, data[x,2], yend, rev(data[x,3])),
col=ints$pabove[i]%%2+2)
}
# add end of plot
xstart <- ints[dim(ints)[1],1]
ystart <- ints[dim(ints)[1],2]
xend <- nrow(data)
yend <- data[dim(data)[1],2]
x <- seq(nrow(data))[intervals == max(intervals)]
polygon(c(xstart, x, xend, rev(x)), c(ystart, data[x,2], yend, rev(data[x,3])),
col=ints[dim(ints)[1]-1,4]%%2+2)
## Add lines for curves
if (addLines)
invisible(lapply(1:2, function(x) lines(seq(nrow(data)), data[,x], col=x%%2+2, lwd=2)))
}
## Plot the data
fillColor(dat,FALSE)
and the final result is this (with the same data used for the question)