I use numpexpr for fast math on large arrays but if the size of the array is less than the CPU cache, writing my code in Cython using simple array math is way faster, especially
You can roll your simple own with basic functions and checks here is a mockup to start:
from libc.stdlib cimport malloc,free
cpdef class SimpleArray:
cdef double * handle
cdef public int length
def __init__(SimpleArray self, int n):
self.handle = <double*>malloc(n * sizeof(double))
self.length = n
def __getitem__(self, int idx):
if idx < self.length:
return self.handle[idx]
raise ValueError("Invalid Idx")
def __dealloc__(SimpleArray self):
free(self.handle)
cpdef SimpleArray running_sum(SimpleArray arr):
cdef int i
cdef SimpleArray out = SimpleArray(arr.length)
out.handle[0] = arr.handle[0]
for i from 1 < i < arr.length-1:
out.handle[i] = out.handle[i-1] + arr.handle[i]
return out
can be used as
>>> import test
>>> simple = test.SimpleArray(100)
>>> del simple
>>> test.running_sum(test.SimpleArray(100))
<test.SimpleArray object at 0x1002a90b0>