Very little wrong.
Just the last line
return 1;
should read
return A.length + 1;
because at this point you've found & removed ALL KEYS from 1 to A.length since you have array entries matching each of them. The test demands that in this situation you must return the next integer above the greatest value found in array A.
All other eventualities (e.g. negative entries, missing 1, missing number between 1 and A.length) are covered by returning the first unremoved key found under iteration. Iteration here is done by "natural ordering", i.e. 1 .. max, by default for a TreeMap. The first unremoved key will therefore be the smallest missing integer.
This change should make the 2 incorrect tests okay again. So 50/50 for correctness.
Efficiency, of course, is another matter and one that carries another 50 points.
Your use of the TreeMap data structure here brings a time penalty when evaluating the test results. Simpler data structures (that essentially use your algorithm) would be faster.
This more primitive algorithm avoids sorting and copies all entries > 1 onto a new array of length 100001 so that index x holds value x. It actually runs faster than Serdar's code with medium and large input arrays.
public int solution(int[] A)
{
int i = 0,
count = 0,
N = A.length;
int[] B = new int[100001]; // Initially all entries are zero
for (i = 0; i < N; i++) // Copy all entries > 0 into array B ...
{
if (A[i] > 0 && A[i] < 100001)
{
B[A[i]] = A[i]; // ... putting value x at index x in B ...
count++; // ... and keep a count of positives
}
}
for (i = 1; i < count + 1; i++) // Find first empty element in B
{
if (B[i] == 0)
{
return i; // Index of empty element = missing int
}
}
// No unfilled B elements above index 0 ?
return count + 1; // => return int above highest filled element
}