Converting Numpy Lstsq residual value to R^2

前端 未结 1 1312
悲&欢浪女
悲&欢浪女 2021-02-03 10:37

I am performing a least squares regression as below (univariate). I would like to express the significance of the result in terms of R^2. Numpy returns a value of unscaled resid

相关标签:
1条回答
  • 2021-02-03 11:09

    See http://en.wikipedia.org/wiki/Coefficient_of_determination

    Your R2 value =

    1 - residual / sum((y - y.mean())**2) 
    

    which is equivalent to

    1 - residual / (n * y.var())
    

    As an example:

    import numpy as np
    
    # Make some data...
    n = 10
    x = np.arange(n)
    y = 3 * x + 5 + np.random.random(n)
    
    # Note that polyfit is an easier way to do this...
    # It would just be "model, resid = np.polyfit(x,y,1,full=True)[:2]" 
    A = np.vstack((x, np.ones(n))).T
    model, resid = np.linalg.lstsq(A, y)[:2]
    
    r2 = 1 - resid / (y.size * y.var())
    print r2
    
    0 讨论(0)
提交回复
热议问题