currently i am having much difficulty thinking of a good method of removing the gradient from a image i received.
The image is a picture taken by a microscope camera th
I have done some work in this area previously and found that a large Gaussian blur kernel can produce a reasonable approximation to the background illumination. I will try to get something working on your example image but, in the meantime, here is an example of your image after Gaussian blur with radius 50 pixels, which may help you decide if it's worth progressing.
UPDATE
Just playing with this image, you can actually get a reasonable improvement using adaptive histogram equalisation (I used CLAHE) - see comparison below - any use?
I will update this answer with more details as I progress.
I would like to point you to this paper: http://www.cs.berkeley.edu/~ravir/dirtylens.pdf, but, in my opinion, without any sort of calibration/comparison image taken apriori, it is difficult to mine out the ground truth from the flared image.
However, if you are trying to just present the image minus the lens flare, disregarding the actual scientific data behind the flared part, then you switch into the domain of image inpainting. Criminsi's algorithm, as described in this paper: http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf and explained/simplified in these two links: http://cs.brown.edu/courses/csci1950-g/results/final/eboswort/ http://www.cc.gatech.edu/~sooraj/inpainting/, will do a very good job in restoring texture information to the flared up regions. (If you'd really like to pursue this approach, do mention that. More comprehensive help can be provided for this).
However, given the fact that we're dealing with microscopic data, I doubt if you'd like to lose the scientific data contained in a particular region of an image. In that case, I really think you need to find a workaround to determine the flare model of the flash/light source w.r.t the lens you're using.
I hope someone else can shed more light on this.