I am trying to get something like what the smoothScatter
function does, only in ggplot. I have figured out everything except for plotting the N most sparse points.
Here is a solution to calculate the sparseness of each (bivariate) observation in the data first (or respectively after the transformation of your choice is applied).
Let's first calculate the most likeliest density value for each observation based on the density calculated from KernSmooth::bkde2D
, which is called for convenience via grDevices:::.smoothScatterCalcDensity
to make a suitable guess for binwidth
if none is provided. This function is useful for other problems as well.
densVals <- function(x, y = NULL, nbin = 128, bandwidth, range.x) {
dat <- cbind(x, y)
# limit dat to strictly finite values
sel <- is.finite(x) & is.finite(y)
dat.sel <- dat[sel, ]
# density map with arbitrary graining along x and y
map <- grDevices:::.smoothScatterCalcDensity(dat.sel, nbin, bandwidth)
map.x <- findInterval(dat.sel[, 1], map$x1)
map.y <- findInterval(dat.sel[, 2], map$x2)
# weighted mean of the fitted density map according to how close x and y are
# to the arbitrary grain of the map
den <- mapply(function(x, y) weighted.mean(x = c(
map$fhat[x, y], map$fhat[x + 1, y + 1],
map$fhat[x + 1, y], map$fhat[x, y + 1]), w = 1 / c(
map$x1[x] + map$x2[y], map$x1[x + 1] + map$x2[y + 1],
map$x1[x + 1] + map$x2[y], map$x1[x] + map$x2[y + 1])),
map.x, map.y)
# replace missing density estimates with NaN
res <- rep(NaN, length(sel))
res[sel] <- den
res
}
I use the weighted mean as a (linear) approximation for the ‘true’ density value. Probably, a simple look-up would do as well.
Here is the actual calculation.
mydata <- data.frame(x = exp(rnorm(10000)), y = exp(rnorm(10000)))
# the transformation applied will affect the local density estimate
mydata$point_density <- densVals(log10(mydata$x), log10(mydata$y))
Now, let's plot. (Building on Troy's answer.)
library(ggplot2)
ggplot(mydata, aes(x = x, y = y)) +
stat_density2d(geom = "raster", aes(fill = ..density.. ^ 0.25), contour = FALSE) +
scale_x_log10() + scale_y_log10() +
scale_fill_gradientn(colours = colorRampPalette(c("white", blues9))(256)) +
# select only the 100 sparesest points
geom_point(data = dplyr::top_n(mydata, 100, -point_density), size = .5)
(final plot) -- Sorry, not allowed to embed images yet.
No overplotting required. :)
Here is a workaround of sorts! Is doesn't work on the least dense n points, but plots all points with a density^0.25 less than x.
It actually plots the stat_density2d()
layer, then the geom_point(
, then the stat_density2d()
, using alpha to create a transparent "hole" in the middle of the last layer where the density^0.25 is above (in this case) 0.4.
Obviously you have the performance hit of running three plots.
# Plot the ggplot version
ggplot(mydata) + aes(x=x, y=y) + scale_x_log10() + scale_y_log10() +
stat_density2d(geom="tile", aes(fill=..density..^0.25, alpha=1), contour=FALSE) +
geom_point(size=0.5) +
stat_density2d(geom="tile", aes(fill=..density..^0.25, alpha=ifelse(..density..^0.25<0.4,0,1)), contour=FALSE) +
scale_fill_gradientn(colours = colorRampPalette(c("white", blues9))(256))