Calculating cumulative returns with pandas dataframe

前端 未结 3 987

I have this dataframe

Poloniex_DOGE_BTC   Poloniex_XMR_BTC    Daily_rets  perc_ret
172 0.006085    -0.000839   0.003309    0
173 0.006229    0.002111    0.005135         


        
相关标签:
3条回答
  • 2021-02-02 16:46

    you just cannot simply add them all by using cumsum

    for example, if you have array [1.1, 1.1], you supposed to have 2.21, not 2.2

    import numpy as np
    
    # daily return:
    df['daily_return'] = df['close'].pct_change()
    
    # calculate cumluative return
    df['cumluative_return'] = np.exp(np.log1p(df['daily_return']).cumsum())
    
    0 讨论(0)
  • 2021-02-02 16:47

    If performance is important, use numpy.cumprod:

    np.cumprod(1 + df['Daily_rets'].values) - 1
    

    Timings:

    #7k rows
    df = pd.concat([df] * 1000, ignore_index=True)
    
    In [191]: %timeit np.cumprod(1 + df['Daily_rets'].values) - 1
    41 µs ± 282 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
    
    In [192]: %timeit (1 + df.Daily_rets).cumprod() - 1
    554 µs ± 3.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
    
    0 讨论(0)
  • 2021-02-02 17:11

    If they are daily simple returns and you want a cumulative return, surely you must want a daily compounded number?

    df['perc_ret'] = (1 + df.Daily_rets).cumprod() - 1  # Or df.Daily_rets.add(1).cumprod().sub(1)
    
    >>> df
         Poloniex_DOGE_BTC  Poloniex_XMR_BTC  Daily_rets  perc_ret
    172           0.006085         -0.000839    0.003309  0.003309
    173           0.006229          0.002111    0.005135  0.008461
    174           0.000000         -0.001651    0.004203  0.012700
    175           0.000000          0.007743    0.005313  0.018080
    176           0.000000         -0.001013   -0.003466  0.014551
    177           0.000000         -0.000550    0.000772  0.015335
    178           0.000000         -0.009864    0.001764  0.017126
    

    If they are log returns, then you could just use cumsum.

    0 讨论(0)
提交回复
热议问题