Fill in missing values with nearest neighbour in Python numpy masked arrays?

后端 未结 3 1545
不思量自难忘°
不思量自难忘° 2021-02-02 16:28

I am working with a 2D Numpy masked_array in Python. I need to change the data values in the masked area such that they equal the nearest unmasked value.

NB. If there ar

相关标签:
3条回答
  • 2021-02-02 16:48

    You could use np.roll to make shifted copies of a, then use boolean logic on the masks to identify the spots to be filled in:

    import numpy as np
    import numpy.ma as ma
    
    a = np.arange(100).reshape(10,10)
    fill_value=-99
    a[2:4,3:8] = fill_value
    a[8,8] = fill_value
    a = ma.masked_array(a,a==fill_value)
    print(a)
    
    # [[0 1 2 3 4 5 6 7 8 9]
    #  [10 11 12 13 14 15 16 17 18 19]
    #  [20 21 22 -- -- -- -- -- 28 29]
    #  [30 31 32 -- -- -- -- -- 38 39]
    #  [40 41 42 43 44 45 46 47 48 49]
    #  [50 51 52 53 54 55 56 57 58 59]
    #  [60 61 62 63 64 65 66 67 68 69]
    #  [70 71 72 73 74 75 76 77 78 79]
    #  [80 81 82 83 84 85 86 87 -- 89]
    #  [90 91 92 93 94 95 96 97 98 99]]
    
    for shift in (-1,1):
        for axis in (0,1):        
            a_shifted=np.roll(a,shift=shift,axis=axis)
            idx=~a_shifted.mask * a.mask
            a[idx]=a_shifted[idx]
    
    print(a)
    
    # [[0 1 2 3 4 5 6 7 8 9]
    #  [10 11 12 13 14 15 16 17 18 19]
    #  [20 21 22 13 14 15 16 28 28 29]
    #  [30 31 32 43 44 45 46 47 38 39]
    #  [40 41 42 43 44 45 46 47 48 49]
    #  [50 51 52 53 54 55 56 57 58 59]
    #  [60 61 62 63 64 65 66 67 68 69]
    #  [70 71 72 73 74 75 76 77 78 79]
    #  [80 81 82 83 84 85 86 87 98 89]
    #  [90 91 92 93 94 95 96 97 98 99]]
    

    If you'd like to use a larger set of nearest neighbors, you could perhaps do something like this:

    neighbors=((0,1),(0,-1),(1,0),(-1,0),(1,1),(-1,1),(1,-1),(-1,-1),
               (0,2),(0,-2),(2,0),(-2,0))
    

    Note that the order of the elements in neighbors is important. You probably want to fill in missing values with the nearest neighbor, not just any neighbor. There's probably a smarter way to generate the neighbors sequence, but I'm not seeing it at the moment.

    a_copy=a.copy()
    for hor_shift,vert_shift in neighbors:
        if not np.any(a.mask): break
        a_shifted=np.roll(a_copy,shift=hor_shift,axis=1)
        a_shifted=np.roll(a_shifted,shift=vert_shift,axis=0)
        idx=~a_shifted.mask*a.mask
        a[idx]=a_shifted[idx]
    

    Note that np.roll happily rolls the lower edge to the top, so a missing value at the top may be filled in by a value from the very bottom. If this is a problem, I'd have to think more about how to fix it. The obvious but not very clever solution would be to use if statements and feed the edges a different sequence of admissible neighbors...

    0 讨论(0)
  • 2021-02-02 17:00

    For more complicated cases you could use scipy.spatial:

    from scipy.spatial import KDTree
    x,y=np.mgrid[0:a.shape[0],0:a.shape[1]]
    
    xygood = np.array((x[~a.mask],y[~a.mask])).T
    xybad = np.array((x[a.mask],y[a.mask])).T
    
    a[a.mask] = a[~a.mask][KDTree(xygood).query(xybad)[1]]
    
    print a
      [[0 1 2 3 4 5 6 7 8 9]
      [10 11 12 13 14 15 16 17 18 19]
      [20 21 22 13 14 15 16 17 28 29]
      [30 31 32 32 44 45 46 38 38 39]
      [40 41 42 43 44 45 46 47 48 49]
      [50 51 52 53 54 55 56 57 58 59]
      [60 61 62 63 64 65 66 67 68 69]
      [70 71 72 73 74 75 76 77 78 79]
      [80 81 82 83 84 85 86 87 78 89]
      [90 91 92 93 94 95 96 97 98 99]]
    
    0 讨论(0)
  • 2021-02-02 17:03

    I generally use a distance transform, as wisely suggested by Juh_ in this question.

    This does not directly apply to masked arrays, but I do not think it will be that hard to transpose there, and it is quite efficient, I've had no problem applying it to large 100MPix images.

    Copying the relevant method there for reference :

    import numpy as np
    from scipy import ndimage as nd
    
    def fill(data, invalid=None):
        """
        Replace the value of invalid 'data' cells (indicated by 'invalid') 
        by the value of the nearest valid data cell
    
        Input:
            data:    numpy array of any dimension
            invalid: a binary array of same shape as 'data'. True cells set where data
                     value should be replaced.
                     If None (default), use: invalid  = np.isnan(data)
    
        Output: 
            Return a filled array. 
        """
        #import numpy as np
        #import scipy.ndimage as nd
    
        if invalid is None: invalid = np.isnan(data)
    
        ind = nd.distance_transform_edt(invalid, return_distances=False, return_indices=True)
        return data[tuple(ind)]
    
    0 讨论(0)
提交回复
热议问题