VotingClassifier: Different Feature Sets

后端 未结 2 836

I have two different feature sets (so, with same number of rows and the labels are the same), in my case DataFrames:

df1:

| A          


        
相关标签:
2条回答
  • 2021-02-02 16:41

    Its pretty easy to make custom functions to do what you want to achieve.

    Import the prerequisites:

    import numpy as np
    from sklearn.preprocessing import LabelEncoder
    
    def fit_multiple_estimators(classifiers, X_list, y, sample_weights = None):
    
        # Convert the labels `y` using LabelEncoder, because the predict method is using index-based pointers
        # which will be converted back to original data later.
        le_ = LabelEncoder()
        le_.fit(y)
        transformed_y = le_.transform(y)
    
        # Fit all estimators with their respective feature arrays
        estimators_ = [clf.fit(X, y) if sample_weights is None else clf.fit(X, y, sample_weights) for clf, X in zip([clf for _, clf in classifiers], X_list)]
    
        return estimators_, le_
    
    
    def predict_from_multiple_estimator(estimators, label_encoder, X_list, weights = None):
    
        # Predict 'soft' voting with probabilities
    
        pred1 = np.asarray([clf.predict_proba(X) for clf, X in zip(estimators, X_list)])
        pred2 = np.average(pred1, axis=0, weights=weights)
        pred = np.argmax(pred2, axis=1)
    
        # Convert integer predictions to original labels:
        return label_encoder.inverse_transform(pred)
    

    The logic is taken from VotingClassifier source.

    Now test the above methods. First get some data:

    from sklearn.datasets import load_iris
    data = load_iris()
    X = data.data
    y = []
    
    #Convert int classes to string labels
    for x in data.target:
        if x==0:
            y.append('setosa')
        elif x==1:
            y.append('versicolor')
        else:
            y.append('virginica')
    

    Split the data into train and test:

    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    

    Divide the X into different feature datas:

    X_train1, X_train2 = X_train[:,:2], X_train[:,2:]
    X_test1, X_test2 = X_test[:,:2], X_test[:,2:]
    
    X_train_list = [X_train1, X_train2]
    X_test_list = [X_test1, X_test2]
    

    Get list of classifiers:

    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.svm import SVC
    
    # Make sure the number of estimators here are equal to number of different feature datas
    classifiers = [('knn',  KNeighborsClassifier(3)),
        ('svc', SVC(kernel="linear", C=0.025, probability=True))]
    

    Fit the classifiers with the data:

    fitted_estimators, label_encoder = fit_multiple_estimators(classifiers, X_train_list, y_train)
    

    Predict using the test data:

    y_pred = predict_from_multiple_estimator(fitted_estimators, label_encoder, X_test_list)
    

    Get accuracy of predictions:

    from sklearn.metrics import accuracy_score
    print(accuracy_score(y_test, y_pred))
    

    Feel free to ask if any doubt.

    0 讨论(0)
  • 2021-02-02 16:51

    To use as much as sklearn tools as possible, I find following way more appealing.

    from sklearn.base import TransformerMixin, BaseEstimator
    import numpy as np
    from sklearn.pipeline import Pipeline
    from sklearn.linear_model import LogisticRegression
    from sklearn.svm import SVC
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import VotingClassifier
    
    ######################
    # custom transformer for sklearn pipeline
    class ColumnExtractor(TransformerMixin, BaseEstimator):
        def __init__(self, cols):
            self.cols = cols
    
        def transform(self, X):
            col_list = []
            for c in self.cols:
                col_list.append(X[:, c:c+1])
            return np.concatenate(col_list, axis=1)
    
        def fit(self, X, y=None):
            return self
    
    ######################
    # processing data
    data = load_iris()
    X = data.data
    y = data.target
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    
    ######################
    # fit clf1 with df1
    pipe1 = Pipeline([
        ('col_extract', ColumnExtractor( cols=range(0,2) )), # selecting features 0 and 1 (df1) to be used with LR (clf1)
        ('clf', LogisticRegression())
        ])
    
    pipe1.fit(X_train, y_train) # sanity check
    pipe1.score(X_test,y_test) # sanity check
    # output: 0.6842105263157895
    
    ######################
    # fit clf2 with df2
    pipe2 = Pipeline([
        ('col_extract', ColumnExtractor( cols=range(2,4) )), # selecting features 2 and 3 (df2) to be used with SVC (clf2)
        ('clf', SVC(probability=True))
        ])
    
    pipe2.fit(X_train, y_train) # sanity check
    pipe2.score(X_test,y_test) # sanity check
    # output: 0.9736842105263158
    
    ######################
    # ensemble/voting classifier where clf1 fitted with df1 and clf2 fitted with df2
    eclf = VotingClassifier(estimators=[('df1-clf1', pipe1), ('df2-clf2', pipe2)], voting='soft', weights= [1, 0.5])
    eclf.fit(X_train, y_train)
    eclf.score(X_test,y_test)
    # output: 0.9473684210526315
    
    0 讨论(0)
提交回复
热议问题