Dictionary keys and values to separate numpy arrays

后端 未结 6 582
迷失自我
迷失自我 2021-02-02 08:32

I have a dictionary as

Samples = {5.207403005022627: 0.69973543384229719, 6.8970222167794759: 0.080782939731898179, 7.8338517407140973: 0.10308033284258854, 8.53         


        
相关标签:
6条回答
  • 2021-02-02 08:52

    In Python 3.7:

    import numpy as np
    
    Samples = {5.207403005022627: 0.69973543384229719, 6.8970222167794759: 0.080782939731898179, 7.8338517407140973: 0.10308033284258854, 8.5301143255505334: 0.018640838362318335, 10.418899728838058: 0.14427355015329846, 5.3983946820220501: 0.51319796560976771}
    
    keys = np.array(list(Samples.keys()))
    vals = np.array(list(Samples.values()))
    

    Note: It's important to say that in this Python version dict.keys() and dict.values() return objects of type dict_keys and dict_values, respectively.

    0 讨论(0)
  • 2021-02-02 08:52

    Just assign all of the values to a list, and then convert to a np.array().

    import numpy as np
    
    Samples = {5.207403005022627: 0.69973543384229719, 6.8970222167794759: 0.080782939731898179, 7.8338517407140973: 0.10308033284258854, 8.5301143255505334: 0.018640838362318335, 10.418899728838058: 0.14427355015329846, 5.3983946820220501: 0.51319796560976771}
    
    keys = np.array(Samples.keys())
    vals = np.array(Samples.values())
    

    Or, if you want to iterate over it:

    import numpy as np
    
    Samples = {5.207403005022627: 0.69973543384229719, 6.8970222167794759: 0.080782939731898179, 7.8338517407140973: 0.10308033284258854, 8.5301143255505334: 0.018640838362318335, 10.418899728838058: 0.14427355015329846, 5.3983946820220501: 0.51319796560976771}
    
    keys = vals = []
    
    for k, v in Samples.items():
        keys.append(k)
        vals.append(v)
    
    keys = np.array(keys)
    vals = np.array(vals)
    
    0 讨论(0)
  • 2021-02-02 08:53

    On python 3.4, the following simply works:

    Samples = {5.207403005022627: 0.69973543384229719, 6.8970222167794759: 0.080782939731898179, 7.8338517407140973: 0.10308033284258854, 8.5301143255505334: 0.018640838362318335, 10.418899728838058: 0.14427355015329846, 5.3983946820220501: 0.51319796560976771}
    
    keys = np.array(list(Samples.keys()))
    values = np.array(list(Samples.values()))
    

    The reason np.array(Samples.values()) doesn't give what you expect in Python 3 is that in Python 3, the values() method of a dict returns an iterable view, whereas in Python 2, it returns an actual list of the keys.

    keys = np.array(list(Samples.keys())) will actually work in Python 2.7 as well, and will make your code more version agnostic. But the extra call to list() will slow it down marginally.

    0 讨论(0)
  • 2021-02-02 09:01

    You can use np.fromiter to directly create numpy arrays from the dictionary key and values views:

    In python 3:

    keys = np.fromiter(Samples.keys(), dtype=float)
    vals = np.fromiter(Samples.values(), dtype=float)
    

    In python 2:

    keys = np.fromiter(Samples.iterkeys(), dtype=float)
    vals = np.fromiter(Samples.itervalues(), dtype=float)
    
    0 讨论(0)
  • 2021-02-02 09:10

    If you care about speed (Python 3.7)

    rnd = np.random.RandomState(10)
    
    for i in [10,100,1000,10000,100000]:
        test_dict = {j:j for j in rnd.uniform(-100,100,i)}
        assert len(test_dict) == i
        print(f"\nFor {i} keys\n-----------")
        
        %timeit keys = np.fromiter(test_dict.keys(), dtype=float)
        
        %timeit keys = np.array(list(test_dict.keys()))
    

    np.fromiter is 5-7 times faster

    For 10 keys
    -----------
    712 ns ± 4.77 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
    1.65 µs ± 9.15 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
    
    For 100 keys
    -----------
    1.87 µs ± 13.7 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
    8.02 µs ± 22.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
    
    For 1000 keys
    -----------
    13.7 µs ± 27.7 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
    70.5 µs ± 251 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
    
    For 10000 keys
    -----------
    128 µs ± 70.6 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
    698 µs ± 455 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
    
    For 100000 keys
    -----------
    1.45 ms ± 374 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
    7.14 ms ± 6.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
    
    0 讨论(0)
  • 2021-02-02 09:19
    keys = np.array(dictionary.keys())
    values = np.array(dictionary.values())
    
    0 讨论(0)
提交回复
热议问题