Segment an image using python and PIL to calculate centroid and rotations of multiple rectangular objects

后端 未结 2 397
梦谈多话
梦谈多话 2021-02-02 04:24

I am using python and PIL to find the centroid and rotation of various rectangles (and squares) in a 640x480 image, similar to this one

相关标签:
2条回答
  • 2021-02-02 04:57

    You need to identify each object before finding the corners. You only need the border of the objects, so you could also reduce your initial input to that. Then it is only a matter of following each distinct border to find your corners, the centroid is directly found after you know each distinct border.

    Using the code below, here is what you get (centroid is the red point, the white text is the rotation in degrees):

    enter image description here

    Note that your input is not binary, so I used a really simple threshold for that. Also, the following code is the simplest way to achieve this, there are faster methods in any decent library.

    import sys
    import math
    from PIL import Image, ImageOps, ImageDraw
    
    orig = ImageOps.grayscale(Image.open(sys.argv[1]))
    orig_bin = orig.point(lambda x: 0 if x < 128 else 255)
    im = orig_bin.load()
    
    border = Image.new('1', orig.size, 'white')
    width, height = orig.size
    bim = border.load()
    # Keep only border points
    for x in xrange(width):
        for y in xrange(height):
            if im[x, y] == 255:
                continue
            if im[x+1, y] or im[x-1, y] or im[x, y+1] or im[x, y-1]:
                bim[x, y] = 0
            else:
                bim[x, y] = 255
    
    # Find each border (the trivial dummy way).
    def follow_border(im, x, y, used):
        work = [(x, y)]
        border = []
        while work:
            x, y = work.pop()
            used.add((x, y))
            border.append((x, y))
            for dx, dy in ((1, 0), (-1, 0), (0, 1), (0, -1),
                    (1, 1), (-1, -1), (1, -1), (-1, 1)):
                px, py = x + dx, y + dy
                if im[px, py] == 255 or (px, py) in used:
                    continue
                work.append((px, py))
    
        return border
    
    used = set()
    border = []
    for x in xrange(width):
        for y in xrange(height):
            if bim[x, y] == 255 or (x, y) in used:
                continue
            b = follow_border(bim, x, y, used)
            border.append(b)
    
    # Find the corners and centroid of each rectangle.
    rectangle = []
    for b in border:
        xmin, xmax, ymin, ymax = width, 0, height, 0
        mean_x, mean_y = 0, 0
        b = sorted(b)
        top_left, bottom_right = b[0], b[-1]
        for x, y in b:
            mean_x += x
            mean_y += y
        centroid = (mean_x / float(len(b)), mean_y / float(len(b)))
        b = sorted(b, key=lambda x: x[1])
        curr = 0
        while b[curr][1] == b[curr + 1][1]:
            curr += 1
        top_right = b[curr]
        curr = len(b) - 1
        while b[curr][1] == b[curr - 1][1]:
            curr -= 1
        bottom_left = b[curr]
    
        rectangle.append([
            [top_left, top_right, bottom_right, bottom_left], centroid])
    
    
    result = orig.convert('RGB')
    draw = ImageDraw.Draw(result)
    for corner, centroid in rectangle:
        draw.line(corner + [corner[0]], fill='red', width=2)
        cx, cy = centroid
        draw.ellipse((cx - 2, cy - 2, cx + 2, cy + 2), fill='red')
        rotation = math.atan2(corner[0][1] - corner[1][1],
                corner[1][0] - corner[0][0])
        rdeg = math.degrees(rotation)
        draw.text((cx + 10, cy), text='%.2f' % rdeg)
    
    result.save(sys.argv[2])
    
    0 讨论(0)
  • 2021-02-02 05:05

    Here is an example of how you can do this by labelling the image, and then taking the centroid for the centers, this is all built in to ndimage in scipy (along with a bunch of other cool image things). For the angles, I've used the rectangle corner intercepts with the edges of the bounding slices.

    import numpy as np
    import scipy
    from scipy import ndimage
    
    im = scipy.misc.imread('6JYjd.png',flatten=1)
    im = np.where(im > 128, 0, 1)
    label_im, num = ndimage.label(im)
    slices = ndimage.find_objects(label_im)
    centroids = ndimage.measurements.center_of_mass(im, label_im, xrange(1,num+1))
    
    angles = []
    for s in slices:
        height, width = label_im[s].shape
        opp = height - np.where(im[s][:,-1]==1)[0][-1] - 1
        adj = width - np.where(im[s][-1,:]==1)[0][0] - 1
        angles.append(np.degrees(np.arctan2(opp,adj)))
    print 'centers:', centroids
    print 'angles:', angles
    

    Output:

    centers: [(157.17299748926865, 214.20652790151453), (219.91948280928594, 442.7146635321775), (363.06183745583041, 288.57169725293517)]
    angles: [7.864024795499545, 26.306963825741803, 7.937188000622946]
    
    0 讨论(0)
提交回复
热议问题