I have been looking for a quadtree/quadtree node implementation on the net for ages. There is some basic stuff but nothing that I would be able to really use it a game.
A red-black tree is not a spatial index; it can only sort on a single ordinal key. A quadtree is (for two dimensions) a spatial index that allows fast lookup and elimination of points. An Octree does the same thing for three dimensions.
Right now STANN is the best open source implementation.
http://sites.google.com/a/compgeom.com/stann/
The reason to use a quadtree is because you can then split on x- and y-coordinates, an octree on x, y and z, making collision detection trivial.
Quadtree: if an element is not in the topleft, it wont collide with one in topright, bottomleft or bottomright.
It is a very basic class, so I don't understand what you are missing in implementations you found.
I would not write such a class, I'd just borrow it from a project with a suitable license.
I warmly suggest you to use a rendering engine, Ogre3D for instance. As far as I know it supports Octrees for scene management. But you can extend the Octree-based class as you wish. I used to code the stuff I needed by myself, but for complex projects, it's just not the right way.
Trees in general are problematic for this in that any item inserted can lie on a boundary, and all the methods of dealing with that situation are fairly unsatisfactory.
You'll most likely want to sort your objects into moveable and static, and check anything that moved on a given frame against the static objects.
BSP Trees are the accepted solution for static geometry (boundary cases handled by splitting the object into two pieces), for dynamic try something like Sort and Sweep (also known as Sweep and Prune).
Quadtrees are used when you only need to store things that are effectively on a plane. Like units in a classic RTS where they are all on the ground or just a little bit above it. Essentially each node has links to 4 children that divide the node's space up into evenly distributed quarters.
Octrees do the same but in all three dimensions rather than just two, and thus they have 8 child nodes and partition the space up into eights. They should be used when the game entities are distributed more evenly among all three dimensions.
If you are looking for a binary tree - like a red-black tree - then you want to use a data structure called a binary space partitioning tree (BSP tree) or a version of it called the KD Tree. These partition space into halves using a plane, in the KD tree the planes are orthogonal (on the XZ, XY, ZY axes) so sometimes it works better in a 3D scene. BSP trees divide the scene up using planes in any orientation, but they can be quite useful, and they were used as far back as Doom.
Now because you've partitioned the game space you now don't have to test every game entity against every other game entity to see if they collide, which is an O(n^2) algorithm at best. Instead you query the data structure to return the game entities within a sub-region of the game space, and only perform collision detection for those nodes against each other.
This means that collision detection for all game entities should be n O(nlogn) operation (at worst).
A couple of extra things to watch out for: