I\'m running a rolling regression very similar to the following code:
library(PerformanceAnalytics)
library(quantmod)
data(managers)
FL <- as.formula(Next(HA
The obvious one is to use lm.fit()
instead of lm()
so you don't incur all the overhead in processing the formula etc.
Update: So when I said obvious what I meant to say was blindingly obvious but deceptively difficult to implement!
After a bit of fiddling around, I came up with this
library(PerformanceAnalytics)
library(quantmod)
data(managers)
The first stage is to realise that the model matrix can be prebuilt, so we do that and convert it back to a Zoo object for use with rollapply()
:
mmat2 <- model.frame(Next(HAM1) ~ HAM1 + HAM2 + HAM3 + HAM4, data = managers,
na.action = na.pass)
mmat2 <- cbind.data.frame(mmat2[,1], Intercept = 1, mmat2[,-1])
mmatZ <- as.zoo(mmat2)
Now we need a function that will employ lm.fit()
to do the heavy lifting without having to create design matrices at each iteration:
MyRegression2 <- function(Z) {
## store value we want to predict for
pred <- Z[31, -1, drop = FALSE]
## get rid of any rows with NA in training data
Z <- Z[1:30, ][!rowSums(is.na(Z[1:30,])) > 0, ]
## Next() would lag and leave NA in row 30 for response
## but we precomputed model matrix, so drop last row still in Z
Z <- Z[-nrow(Z),]
## fit the model
fit <- lm.fit(Z[, -1, drop = FALSE], Z[,1])
## get things we need to predict, in case pivoting turned on in lm.fit
p <- fit$rank
p1 <- seq_len(p)
piv <- fit$qr$pivot[p1]
## model coefficients
beta <- fit$coefficients
## this gives the predicted value for row 31 of data passed in
drop(pred[, piv, drop = FALSE] %*% beta[piv])
}
A comparison of timings:
> system.time(Result <- rollapply(managers, 31, FUN="MyRegression",FL,
+ by.column = FALSE, align = "right",
+ na.pad = TRUE))
user system elapsed
0.925 0.002 1.020
>
> system.time(Result2 <- rollapply(mmatZ, 31, FUN = MyRegression2,
+ by.column = FALSE, align = "right",
+ na.pad = TRUE))
user system elapsed
0.048 0.000 0.05
Which affords a pretty reasonable improvement over the original. And now check that the resulting objects are the same:
> all.equal(Result, Result2)
[1] TRUE
Enjoy!
I wrote a package, rollRegres
, that does this much faster. It is ~ 58 times faster than Gavin Simpson's answer. Here is an example
# simulate data
set.seed(101)
n <- 10000
wdth <- 50
X <- matrix(rnorm(10 * n), n, 10)
y <- drop(X %*% runif(10)) + rnorm(n)
Z <- cbind(y, X)
# assign other function
lm_version <- function(Z, width = wdth) {
pred <- Z[width + 1, -1, drop = FALSE]
## fit the model
Z <- Z[-nrow(Z), ]
fit <- lm.fit(Z[, -1, drop = FALSE], Z[,1])
## get things we need to predict, in case pivoting turned on in lm.fit
p <- fit$rank
p1 <- seq_len(p)
piv <- fit$qr$pivot[p1]
## model coefficients
beta <- fit$coefficients
## this gives the predicted value for next obs
drop(pred[, piv, drop = FALSE] %*% beta[piv])
}
# show that they yield the same
library(rollRegres) # the new package
library(zoo)
all.equal(
rollapply(Z, wdth + 1, FUN = lm_version,
by.column = FALSE, align = "right", fill = NA_real_),
roll_regres.fit(
x = X, y = y, width = wdth, do_compute = "1_step_forecasts"
)$one_step_forecasts)
#R [1] TRUE
# benchmark
library(compiler)
lm_version <- cmpfun(lm_version)
microbenchmark::microbenchmark(
newnew = roll_regres.fit(
x = X, y = y, width = wdth, do_compute = "1_step_forecasts"),
prev = rollapply(Z, wdth + 1, FUN = lm_version,
by.column = FALSE, align = "right", fill = NA_real_),
times = 10)
#R Unit: milliseconds
#R expr min lq mean median uq max neval
#R newnew 10.27279 10.48929 10.91631 11.04139 11.13877 11.87121 10
#R prev 555.45898 565.02067 582.60309 582.22285 602.73091 605.39481 10
You can reduce the run time by updating a decomposition. This yields an cost at each iteration instead of where n is you window width. Below is a code to compare the two. It would likely be much faster doing it in C++ but the LINPACK dchud
and dchdd
are not included with R so you would have to write a package to do so. Further, I recall reading that you may do faster with other implementations than the LINPACK dchud
and dchdd
for the R update
library(SamplerCompare) # for LINPACK `chdd` and `chud`
roll_forcast <- function(X, y, width){
n <- nrow(X)
p <- ncol(X)
out <- rep(NA_real_, n)
is_first <- TRUE
i <- width
while(i < n){
if(is_first){
is_first <- FALSE
qr. <- qr(X[1:width, ])
R <- qr.R(qr.)
# Use X^T for the rest
X <- t(X)
XtY <- drop(tcrossprod(y[1:width], X[, 1:width]))
} else {
x_new <- X[, i]
x_old <- X[, i - width]
# update R
R <- .Fortran(
"dchud", R, p, p, x_new, 0., 0L, 0L,
0., 0., numeric(p), numeric(p),
PACKAGE = "SamplerCompare")[[1]]
# downdate R
R <- .Fortran(
"dchdd", R, p, p, x_old, 0., 0L, 0L,
0., 0., numeric(p), numeric(p), integer(1),
PACKAGE = "SamplerCompare")[[1]]
# update XtY
XtY <- XtY + y[i] * x_new - y[i - width] * x_old
}
coef. <- .Internal(backsolve(R, XtY, p, TRUE, TRUE))
coef. <- .Internal(backsolve(R, coef., p, TRUE, FALSE))
i <- i + 1
out[i] <- X[, i] %*% coef.
}
out
}
# simulate data
set.seed(101)
n <- 10000
wdth = 50
X <- matrix(rnorm(10 * n), n, 10)
y <- drop(X %*% runif(10)) + rnorm(n)
Z <- cbind(y, X)
# assign other function
lm_version <- function(Z, width = wdth) {
pred <- Z[width + 1, -1, drop = FALSE]
## fit the model
Z <- Z[-nrow(Z), ]
fit <- lm.fit(Z[, -1, drop = FALSE], Z[,1])
## get things we need to predict, in case pivoting turned on in lm.fit
p <- fit$rank
p1 <- seq_len(p)
piv <- fit$qr$pivot[p1]
## model coefficients
beta <- fit$coefficients
## this gives the predicted value for row 31 of data passed in
drop(pred[, piv, drop = FALSE] %*% beta[piv])
}
# show that they yield the same
library(zoo)
all.equal(
rollapply(Z, wdth + 1, FUN = lm_version,
by.column = FALSE, align = "right", fill = NA_real_),
roll_forcast(X, y, wdth))
#R> [1] TRUE
# benchmark
library(compiler)
roll_forcast <- cmpfun(roll_forcast)
lm_version <- cmpfun(lm_version)
microbenchmark::microbenchmark(
new = roll_forcast(X, y, wdth),
prev = rollapply(Z, wdth + 1, FUN = lm_version,
by.column = FALSE, align = "right", fill = NA_real_),
times = 10)
#R> Unit: milliseconds
#R> expr min lq mean median uq max neval cld
#R> new 113.7637 115.4498 129.6562 118.6540 122.4930 230.3414 10 a
#R> prev 639.6499 674.1677 682.1996 678.6195 686.8816 763.8034 10 b