I have following Pandas Dataframe:
In [66]: hdf.size()
Out[66]:
a b
0 0.0 21004
0.1 119903
0.2
Welcome to SO.
It looks quite clear that for each of your 'a' level, the numbers of 'b' levels are not the same, thus I will suggest the following solution:
In [44]:
print df #an example, you can get your dataframe in to this by rest_index()
a b value
0 0 1 0.336885
1 0 2 0.276750
2 0 3 0.796488
3 1 1 0.156050
4 1 2 0.401942
5 1 3 0.252651
6 2 1 0.861911
7 2 2 0.914803
8 2 3 0.869331
9 3 1 0.284757
10 3 2 0.488330
[11 rows x 3 columns]
In [45]:
#notice that you will have some 'NAN' values
df=df.pivot('a', 'b', 'value')
In [46]:
X=df.columns.values
Y=df.index.values
Z=df.values
x,y=np.meshgrid(X, Y)
plt.contourf(x, y, Z) #the NAN will be plotted as white spaces
Out[46]:
<matplotlib.contour.QuadContourSet instance at 0x1081385a8>
Thanks a lot! My fault was, that I did not realize, that I have to apply some function to the groupby dataframe, like .size()
, to work with it...
hdf = aggdf.groupby(['a','b']).size()
hdf
gives me
a b
1 -2.0 1
-1.9 1
-1.8 1
-1.7 2
-1.6 5
-1.5 10
-1.4 9
-1.3 21
-1.2 34
-1.1 67
-1.0 65
-0.9 94
-0.8 180
-0.7 242
-0.6 239
...
187 0.4 22
0.5 10
188 -0.6 2
-0.5 2
-0.4 1
-0.3 2
-0.2 5
-0.1 10
-0.0 18
0.1 19
0.2 20
0.3 13
0.4 7
0.5 5
0.6 1
Length: 8844, dtype: int64
With that, and your help CT Zhu, I could then do
hdfreset = hdf.reset_index()
hdfreset.columns = ['a', 'b', 'occurrence']
hdfpivot=hdfreset.pivot('a', 'b')
and this finally gave me the correct values to
X=hdfpivot.columns.levels[1].values
Y=hdfpivot.index.values
Z=hdfpivot.values
Xi,Yi = np.meshgrid(X, Y)
plt.contourf(Yi, Xi, Z, alpha=0.7, cmap=plt.cm.jet);
which leads to this beautiful contourf: