String database[] = {\'a\', \'b\', \'c\'};
I would like to generate the following strings sequence, based on given database
.
i came across this question as one of the interview question. Following is the solution that i have implemented for this problem using recursion.
public class PasswordCracker {
private List<String> doComputations(String inputString) {
List<String> totalList = new ArrayList<String>();
for (int i = 1; i <= inputString.length(); i++) {
totalList.addAll(getCombinationsPerLength(inputString, i));
}
return totalList;
}
private ArrayList<String> getCombinationsPerLength(
String inputString, int i) {
ArrayList<String> combinations = new ArrayList<String>();
if (i == 1) {
char [] charArray = inputString.toCharArray();
for (int j = 0; j < charArray.length; j++) {
combinations.add(((Character)charArray[j]).toString());
}
return combinations;
}
for (int j = 0; j < inputString.length(); j++) {
ArrayList<String> combs = getCombinationsPerLength(inputString, i-1);
for (String string : combs) {
combinations.add(inputString.charAt(j) + string);
}
}
return combinations;
}
public static void main(String args[]) {
String testString = "abc";
PasswordCracker crackerTest = new PasswordCracker();
System.out.println(crackerTest.doComputations(testString));
}
}
Java implementation of your permutation generator:-
public class Permutations {
public static void permGen(char[] s,int i,int k,char[] buff) {
if(i<k) {
for(int j=0;j<s.length;j++) {
buff[i] = s[j];
permGen(s,i+1,k,buff);
}
}
else {
System.out.println(String.valueOf(buff));
}
}
public static void main(String[] args) {
char[] database = {'a', 'b', 'c'};
char[] buff = new char[database.length];
int k = database.length;
for(int i=1;i<=k;i++) {
permGen(database,0,i,buff);
}
}
}
You should check this answer: Getting every possible permutation of a string or combination including repeated characters in Java
To get this code:
public static String[] getAllLists(String[] elements, int lengthOfList)
{
//lists of length 1 are just the original elements
if(lengthOfList == 1) return elements;
else {
//initialize our returned list with the number of elements calculated above
String[] allLists = new String[(int)Math.pow(elements.length, lengthOfList)];
//the recursion--get all lists of length 3, length 2, all the way up to 1
String[] allSublists = getAllLists(elements, lengthOfList - 1);
//append the sublists to each element
int arrayIndex = 0;
for(int i = 0; i < elements.length; i++){
for(int j = 0; j < allSublists.length; j++){
//add the newly appended combination to the list
allLists[arrayIndex] = elements[i] + allSublists[j];
arrayIndex++;
}
}
return allLists;
}
}
public static void main(String[] args){
String[] database = {"a","b","c"};
for(int i=1; i<=database.length; i++){
String[] result = getAllLists(database, i);
for(int j=0; j<result.length; j++){
System.out.println(result[j]);
}
}
}
Although further improvement in memory could be made, since this solution generates all solution to memory first (the array), before we can print it. But the idea is the same, which is to use recursive algorithm.
This smells like counting in binary:
My first instinct would be to use a binary counter as a "bitmap" of characters to generate those the possible values. However, there are several wonderful answer to related questions here that suggest using recursion. See
For anyone looking for non-recursive options, here is a sample for numeric permutations (can easily be adapted to char
. numberOfAgents
is the number of columns and the set of numbers is 0
to numberOfActions
:
int numberOfAgents=5;
int numberOfActions = 8;
byte[][]combinations = new byte[(int)Math.pow(numberOfActions,numberOfAgents)][numberOfAgents];
// do each column separately
for (byte j = 0; j < numberOfAgents; j++) {
// for this column, repeat each option in the set 'reps' times
int reps = (int) Math.pow(numberOfActions, j);
// for each column, repeat the whole set of options until we reach the end
int counter=0;
while(counter<combinations.length) {
// for each option
for (byte i = 0; i < numberOfActions; i++) {
// save each option 'reps' times
for (int k = 0; k < reps; k++)
combinations[counter + i * reps + k][j] = i;
}
// increase counter by 'reps' times amount of actions
counter+=reps*numberOfActions;
}
}
// print
for(byte[] setOfActions : combinations) {
for (byte b : setOfActions)
System.out.print(b);
System.out.println();
}
// IF YOU NEED REPEATITION USE ARRAYLIST INSTEAD OF SET!!
import java.util.*;
public class Permutation {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
System.out.println("ENTER A STRING");
Set<String> se=find(in.nextLine());
System.out.println((se));
}
public static Set<String> find(String s)
{
Set<String> ss=new HashSet<String>();
if(s==null)
{
return null;
}
if(s.length()==0)
{
ss.add("");
}
else
{
char c=s.charAt(0);
String st=s.substring(1);
Set<String> qq=find(st);
for(String str:qq)
{
for(int i=0;i<=str.length();i++)
{
ss.add(comb(str,c,i));
}
}
}
return ss;
}
public static String comb(String s,char c,int i)
{
String start=s.substring(0,i);
String end=s.substring(i);
return start+c+end;
}
}
// IF YOU NEED REPEATITION USE ARRAYLIST INSTEAD OF SET!!