For my neural network I want to augment my training data by adding small random rotations and zooms to my images. The issue I am having is that scipy is changing the size of my
scipy.ndimage.rotate accepts a reshape=
parameter:
reshape : bool, optional
If
reshape
is true, the output shape is adapted so that the input array is contained completely in the output. Default is True.
So to "clip" the edges you can simply call scipy.ndimage.rotate(img, ..., reshape=False)
.
from scipy.ndimage import rotate
from scipy.misc import face
from matplotlib import pyplot as plt
img = face()
rot = rotate(img, 30, reshape=False)
fig, ax = plt.subplots(1, 2)
ax[0].imshow(img)
ax[1].imshow(rot)
Things are more complicated for scipy.ndimage.zoom.
A naive method would be to zoom
the entire input array, then use slice indexing and/or zero-padding to make the output the same size as your input. However, in cases where you're increasing the size of the image it's wasteful to interpolate pixels that are only going to get clipped off at the edges anyway.
Instead you could index only the part of the input that will fall within the bounds of the output array before you apply zoom
:
import numpy as np
from scipy.ndimage import zoom
def clipped_zoom(img, zoom_factor, **kwargs):
h, w = img.shape[:2]
# For multichannel images we don't want to apply the zoom factor to the RGB
# dimension, so instead we create a tuple of zoom factors, one per array
# dimension, with 1's for any trailing dimensions after the width and height.
zoom_tuple = (zoom_factor,) * 2 + (1,) * (img.ndim - 2)
# Zooming out
if zoom_factor < 1:
# Bounding box of the zoomed-out image within the output array
zh = int(np.round(h * zoom_factor))
zw = int(np.round(w * zoom_factor))
top = (h - zh) // 2
left = (w - zw) // 2
# Zero-padding
out = np.zeros_like(img)
out[top:top+zh, left:left+zw] = zoom(img, zoom_tuple, **kwargs)
# Zooming in
elif zoom_factor > 1:
# Bounding box of the zoomed-in region within the input array
zh = int(np.round(h / zoom_factor))
zw = int(np.round(w / zoom_factor))
top = (h - zh) // 2
left = (w - zw) // 2
out = zoom(img[top:top+zh, left:left+zw], zoom_tuple, **kwargs)
# `out` might still be slightly larger than `img` due to rounding, so
# trim off any extra pixels at the edges
trim_top = ((out.shape[0] - h) // 2)
trim_left = ((out.shape[1] - w) // 2)
out = out[trim_top:trim_top+h, trim_left:trim_left+w]
# If zoom_factor == 1, just return the input array
else:
out = img
return out
For example:
zm1 = clipped_zoom(img, 0.5)
zm2 = clipped_zoom(img, 1.5)
fig, ax = plt.subplots(1, 3)
ax[0].imshow(img)
ax[1].imshow(zm1)
ax[2].imshow(zm2)
I recommend using cv2.resize
because it is way faster than scipy.ndimage.zoom
, probably due to support for simpler interpolation methods.
For a 480x640 image :
cv2.resize
takes ~2 msscipy.ndimage.zoom
takes ~500 msscipy.ndimage.zoom(...,order=0)
takes ~175msIf you are doing the data augmentation on the fly, this amount of speedup is invaluable because it means more experiments in less time.
Here is a version of clipped_zoom
using cv2.resize
def cv2_clipped_zoom(img, zoom_factor):
"""
Center zoom in/out of the given image and returning an enlarged/shrinked view of
the image without changing dimensions
Args:
img : Image array
zoom_factor : amount of zoom as a ratio (0 to Inf)
"""
height, width = img.shape[:2] # It's also the final desired shape
new_height, new_width = int(height * zoom_factor), int(width * zoom_factor)
### Crop only the part that will remain in the result (more efficient)
# Centered bbox of the final desired size in resized (larger/smaller) image coordinates
y1, x1 = max(0, new_height - height) // 2, max(0, new_width - width) // 2
y2, x2 = y1 + height, x1 + width
bbox = np.array([y1,x1,y2,x2])
# Map back to original image coordinates
bbox = (bbox / zoom_factor).astype(np.int)
y1, x1, y2, x2 = bbox
cropped_img = img[y1:y2, x1:x2]
# Handle padding when downscaling
resize_height, resize_width = min(new_height, height), min(new_width, width)
pad_height1, pad_width1 = (height - resize_height) // 2, (width - resize_width) //2
pad_height2, pad_width2 = (height - resize_height) - pad_height1, (width - resize_width) - pad_width1
pad_spec = [(pad_height1, pad_height2), (pad_width1, pad_width2)] + [(0,0)] * (img.ndim - 2)
result = cv2.resize(cropped_img, (resize_width, resize_height))
result = np.pad(result, pad_spec, mode='constant')
assert result.shape[0] == height and result.shape[1] == width
return result