I was reading the paper authored by Simon Peyton Jones, et al. named “Playing by the Rules: Rewriting as a practical optimization technique in GHC”. In the second se
This could be viewed as a balance between balancing expectations in the specific case, and balancing them in the general case. This balance can generate funny situations where you can know how to make something faster, but it is better for the language in general if you don't.
In the specific case of maps in the structure you give, the computer could find optimizations. However, what about related structures? What if the function isn't map? What if there's an additional layer of indirection, such as a function that returns map. In those cases, the compiler cannot optimize easily. This is the general case problem.
How if you do optimize the special case, one of two outcomes occurs
Given the need for developers to think about such optimizations in the general case, we expect to see developers doing these optimizations in the simple case, decreasing the need to for the optimization in the first place!
Now, if it turns out that the particular case you are interested accounts for something massive like 2% of the world codebase in Haskell, there would be a much stronger argument for applying your special-case optimization.
Something in that direction was investigated in a Bachelor’s thesis of Johannes Bader, a student of mine: Finding Equations in Functional Programs (PDF file).
To some degree it is certainly possible, but
It is however useful to clean up after other transformations such as inlining and various form of fusion.
Aggressive inlining can derive many of the equalities that rewrite rules are short-hand for. The differences is that inlining is "blind", so you don't know in advance if the result will be better or worse, or even if it will terminate.
Rewrite rules, however, can do completely non-obvious things, based on much higher level facts about the program. Think of rewrite rules as adding new axioms to the optimizer. By adding these you have a richer rule set to apply, making complicated optimizations easier to apply.
Stream fusion, for example, changes the data type representation. This cannot be expressed through inlining, as it involves a representation type change (we reframe the optimization problem in terms of the Stream
ADT). Easy to state in rewrite rules, impossible with inlining alone.