I am a new python afficionado. For R users, there is one function : paste that helps to concatenate two or more variables in a dataframe. It\'s very useful. For example Suppose
For this particular case, the paste
operator in R
is closest to Python's format which was added in Python 2.6. It's newer and somewhat more flexible than the older %
operator.
For a purely Python-ic answer without using numpy or pandas, here is one way to do it using your original data in the form of a list of lists (this could also have been done as a list of dict, but that seemed more cluttered to me).
# -*- coding: utf-8 -*-
names=['categorie','titre','tarifMin','lieu','long','lat','img','dateSortie']
records=[[
'zoo', 'Aquar', 0.0,'Aquar',2.385,48.89,'ilo',0],[
'zoo', 'Aquar', 4.5,'Aquar',2.408,48.83,'ilo',0],[
'lieu', 'Jardi', 0.0,'Jardi',2.320,48.86,'ilo',0],[
'lieu', 'Bois', 0.0,'Bois', 2.455,48.82,'ilo',0],[
'espac', 'Canal', 0.0,'Canal',2.366,48.87,'ilo',0],[
'espac', 'Canal', -1.0,'Canal',2.384,48.89,'ilo',0],[
'parc', 'Le Ma', 20.0,'Le Ma', 2.353,48.87,'ilo',0] ]
def prix(p):
if (p != -1):
return 'C partir de {} €uros'.format(p)
return 'sans prix indique'
def msg(a):
return 'Evenement permanent --> {}, {} {}'.format(a[0],a[1],prix(a[2]))
[m.append(msg(m)) for m in records]
from pprint import pprint
pprint(records)
The result is this:
[['zoo',
'Aquar',
0.0,
'Aquar',
2.385,
48.89,
'ilo',
0,
'Evenement permanent --> zoo, Aquar C partir de 0.0 \xe2\x82\xacuros'],
['zoo',
'Aquar',
4.5,
'Aquar',
2.408,
48.83,
'ilo',
0,
'Evenement permanent --> zoo, Aquar C partir de 4.5 \xe2\x82\xacuros'],
['lieu',
'Jardi',
0.0,
'Jardi',
2.32,
48.86,
'ilo',
0,
'Evenement permanent --> lieu, Jardi C partir de 0.0 \xe2\x82\xacuros'],
['lieu',
'Bois',
0.0,
'Bois',
2.455,
48.82,
'ilo',
0,
'Evenement permanent --> lieu, Bois C partir de 0.0 \xe2\x82\xacuros'],
['espac',
'Canal',
0.0,
'Canal',
2.366,
48.87,
'ilo',
0,
'Evenement permanent --> espac, Canal C partir de 0.0 \xe2\x82\xacuros'],
['espac',
'Canal',
-1.0,
'Canal',
2.384,
48.89,
'ilo',
0,
'Evenement permanent --> espac, Canal sans prix indique'],
['parc',
'Le Ma',
20.0,
'Le Ma',
2.353,
48.87,
'ilo',
0,
'Evenement permanent --> parc, Le Ma C partir de 20.0 \xe2\x82\xacuros']]
Note that although I've defined a list names
it isn't actually used. One could define a dictionary with the names of the titles as the key and the field number (starting from 0) as the value, but I didn't bother with this to try to keep the example simple.
The functions prix
and msg
are fairly simple. The only tricky portion is the list comprehension [m.append(msg(m)) for m in records]
which iterates through all of the records, and modifies each to append your new field, created via a call to msg
.
This is simple example how to achive that (If I'am not worng what do you want to do):
import numpy as np
import pandas as pd
dates = pd.date_range('20130101',periods=6)
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD'))
for row in df.itertuples():
index, A, B, C, D = row
print '%s Evenement permanent --> %s , next data %s' % (index, A, B)
Output:
>>>df
A B C D
2013-01-01 -0.400550 -0.204032 -0.954237 0.019025
2013-01-02 0.509040 -0.611699 1.065862 0.034486
2013-01-03 0.366230 0.805068 -0.144129 -0.912942
2013-01-04 1.381278 -1.783794 0.835435 -0.140371
2013-01-05 1.140866 2.755003 -0.940519 -2.425671
2013-01-06 -0.610569 -0.282952 0.111293 -0.108521
This what loop for print: 2013-01-01 00:00:00 Evenement permanent --> -0.400550121168 , next data -0.204032344442
2013-01-02 00:00:00 Evenement permanent --> 0.509040318928 , next data -0.611698560541
2013-01-03 00:00:00 Evenement permanent --> 0.366230438863 , next data 0.805067758304
2013-01-04 00:00:00 Evenement permanent --> 1.38127775713 , next data -1.78379439485
2013-01-05 00:00:00 Evenement permanent --> 1.14086631509 , next data 2.75500268167
2013-01-06 00:00:00 Evenement permanent --> -0.610568516983 , next data -0.282952162792