Sklearn, gridsearch: how to print out progress during the execution?

后端 未结 3 1243
自闭症患者
自闭症患者 2021-02-01 11:38

I am using GridSearch from sklearn to optimize parameters of the classifier. There is a lot of data, so the whole process of optimization takes a while

相关标签:
3条回答
  • 2021-02-01 12:11

    Check out the GridSearchCVProgressBar

    Just found it right now and I'm using it. Very into it:

    In [1]: GridSearchCVProgressBar
    Out[1]: pactools.grid_search.GridSearchCVProgressBar
    
    In [2]:
    
    In [2]: ??GridSearchCVProgressBar
    Init signature: GridSearchCVProgressBar(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise', return_train_score='warn')
    Source:
    class GridSearchCVProgressBar(model_selection.GridSearchCV):
        """Monkey patch Parallel to have a progress bar during grid search"""
    
        def _get_param_iterator(self):
            """Return ParameterGrid instance for the given param_grid"""
    
            iterator = super(GridSearchCVProgressBar, self)._get_param_iterator()
            iterator = list(iterator)
            n_candidates = len(iterator)
    
            cv = model_selection._split.check_cv(self.cv, None)
            n_splits = getattr(cv, 'n_splits', 3)
            max_value = n_candidates * n_splits
    
            class ParallelProgressBar(Parallel):
                def __call__(self, iterable):
                    bar = ProgressBar(max_value=max_value, title='GridSearchCV')
                    iterable = bar(iterable)
                    return super(ParallelProgressBar, self).__call__(iterable)
    
            # Monkey patch
            model_selection._search.Parallel = ParallelProgressBar
    
            return iterator
    File:           ~/anaconda/envs/python3/lib/python3.6/site-packages/pactools/grid_search.py
    Type:           ABCMeta
    
    In [3]: ?GridSearchCVProgressBar
    Init signature: GridSearchCVProgressBar(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise', return_train_score='warn')
    Docstring:      Monkey patch Parallel to have a progress bar during grid search
    File:           ~/anaconda/envs/python3/lib/python3.6/site-packages/pactools/grid_search.py
    Type:           ABCMeta
    
    0 讨论(0)
  • 2021-02-01 12:19

    Set the verbose parameter in GridSearchCV to a positive number (the greater the number the more detail you will get). For instance:

    GridSearchCV(clf, param_grid, cv=cv, scoring='accuracy', verbose=10)  
    
    0 讨论(0)
  • 2021-02-01 12:31

    I would just like to complement DavidS's answer

    To give you an idea, for a very simple case, this is how it looks with verbose=1:

    Fitting 10 folds for each of 1 candidates, totalling 10 fits
    [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
    [Parallel(n_jobs=1)]: Done  10 out of  10 | elapsed:  1.2min finished
    

    And this is how it looks with verbose=10:

    Fitting 10 folds for each of 1 candidates, totalling 10 fits
    [CV] booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1 
    [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
    [CV]  booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1, score=0.637, total=   7.1s
    [CV] booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1 
    [Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    7.0s remaining:    0.0s
    [CV]  booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1, score=0.630, total=   6.5s
    [CV] booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1 
    [Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:   13.5s remaining:    0.0s
    [CV]  booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1, score=0.637, total=   6.5s
    [CV] booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1 
    [Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:   20.0s remaining:    0.0s
    [CV]  booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1, score=0.637, total=   6.7s
    [CV] booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1 
    [Parallel(n_jobs=1)]: Done   4 out of   4 | elapsed:   26.7s remaining:    0.0s
    [CV]  booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1, score=0.632, total=   7.9s
    [CV] booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1 
    [Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:   34.7s remaining:    0.0s
    [CV]  booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1, score=0.622, total=   6.9s
    [CV] booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1 
    [Parallel(n_jobs=1)]: Done   6 out of   6 | elapsed:   41.6s remaining:    0.0s
    [CV]  booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1, score=0.627, total=   7.1s
    [CV] booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1 
    [Parallel(n_jobs=1)]: Done   7 out of   7 | elapsed:   48.7s remaining:    0.0s
    [CV]  booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1, score=0.628, total=   7.2s
    [CV] booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1 
    [Parallel(n_jobs=1)]: Done   8 out of   8 | elapsed:   55.9s remaining:    0.0s
    [CV]  booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1, score=0.640, total=   6.6s
    [CV] booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1 
    [Parallel(n_jobs=1)]: Done   9 out of   9 | elapsed:  1.0min remaining:    0.0s
    [CV]  booster=gblinear, learning_rate=0.0001, max_depth=3, n_estimator=100, subsample=0.1, score=0.629, total=   6.6s
    [Parallel(n_jobs=1)]: Done  10 out of  10 | elapsed:  1.2min finished
    

    In my case, verbose=1 does the trick.

    0 讨论(0)
提交回复
热议问题