In problem 4 from http://projecteuler.net/ it says:
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-d
580085 = 995 X 583, where 906609 = 993 X 913. Found it only by applying brute-forcing from top to bottom!
Simple:
def is_pallindrome(n):
s = str(n)
for n in xrange(1, len(s)/2 + 1):
if s[n-1] != s[-n]:
return False
return True
largest = 0
for j in xrange(100, 1000):
for k in xrange(j, 1000):
if is_pallindrome(j*k):
if (j*k) > largest: largest = j*k
print largest
Here is my Python code:
max_pal = 0
for i in range(100,999):
for j in range(100,999):
mult = i * j
if str(mult) == str(mult)[::-1]: #Check if the number is palindrome
if mult > max_pal:
max_pal = mult
print (max_pal)
ReThink: efficiency and performance
def palindrome(n):
maxNumberWithNDigits = int('9' * n) #find the max number with n digits
product = maxNumberWithNDigits * maxNumberWithNDigits
#Since we are looking the max, stop on the first match
while True:
if str(product) == str(product)[::-1]: break;
product-=1
return product
start=time.time()
palindrome(3)
end=time.time()-start
palindrome...: 997799, 0.000138998031616 secs
Here I added two 'break' to improve the speed of this program.
def is_palindrome(num):
return str(num) == str(num)[::-1]
def max_palindrome(n):
max_palindrome = 1
for i in range(10**n-1,10**(n-1)-1,-1):
for j in range(10**n-1,i-1,-1):
if is_palindrome(i*j) and i*j > max_palindrome:
max_palindrome = i * j
break
elif i*j < max_palindrome:
break
return max_palindrome
n=int(raw_input())
print max_palindrome(n)
Here is my code to solve this problem.
lst = []
for i in range(100,1000):
for n in range(2,i) :
lst.append (i* n)
lst.append(i*i)
lst2=[]
for i in lst:
if str(i) == str(i)[::-1]:
lst2.append(i)
print max(lst2)