I am trying to port a 32-bit dll (and application) to 64-bit and I have managed to build it without errors. When trying to load it with my 64-bit application I noticed that the
For Win32 build:
If you use __stdcall
, you will get something like this (dumped with dumpbin /exports
):
__declspec(dllexport) int __stdcall
->
ordinal hint RVA name
1 0 00001240 _F1@0 = _F1@0
2 1 0000124D _F2@0 = _F2@0
And you have to use GetProcAddress("_F1@0")
to locate the function pointer.
If you use __cdecl
, you will get something like this:
__declspec(dllexport) int __cdecl
->
ordinal hint RVA name
1 0 00001240 F1 = _F1
2 1 0000124D F2 = _F2
And you can use GetProcAddress("F1")
to locate the function pointer.
BTW, if you add a XXX.def
file to your Visual Studio project. One more link option will be silently added to your linker command line /DEF:"XXX.def"
in the All Options
window. And if you change your .def
file name later for whatever reason, this link option doesn't change accordingly. You need to manually change the def file name in the project properties window.
__stdcall
is not supported (and is ignored) on x64. Quoting MSDN:
On ARM and x64 processors, __stdcall is accepted and ignored by the compiler; on ARM and x64 architectures, by convention, arguments are passed in registers when possible, and subsequent arguments are passed on the stack.
The calling convention on x64 is pretty much __fastcall.
Since the calling conventions and name decoration rules on x86 and x64 differ, you have to abstract this somehow. So your idea with #if _WIN64
goes in the right direction.
You can examine x86 calling conventions and your needs and perhaps devise a macro which could automate the name selection process.
As you can tell, in 64-bit Windows names are not decorated.
In 32-bit __cdecl
and __stdcall
symbols, the symbol name is prepended by an underscore. The trailing '@8' in the exported name for the 32-bit version of your example function is the number of bytes in the parameter list. It is there because you specified __stdcall
. If you use the __cdecl
calling convention (the default for C/C++ code), you won't get that. If you use __cdecl
, it makes it much easier to wrap GetProcAddress()
with something like:
#if _WIN64
#define DecorateSymbolName(s) s
#else
#define DecorateSymbolName(s) "_" ## s
#endif
then just call with
pfnConnect = GetProcAddress(hDLL, DecorateSymbolName("Connect"));
pfnOtherFunc = GetProcAddress(hDLL, DecorateSymbolName("OtherFunc"));
or something similar (error checking omitted in example). To do this, remember to declare your exported functions as:
__declspec(dllexport) long __cdecl Connect(char * name, long size);
__declspec(dllexport) long __cdecl OtherFunc(int someValue);
In addition to being easier to maintain, if during development the signature of an exported function changes, you don't have to screw around with your #define
wrappers.
Downside: if during development the number of bytes in a given function's parameter list changes, it will not be caught by the application importing the function because the changing the signature will not change the name. Personally, I don't think this is an issue because the 64-bit build would blow up under the same circumstances anyway as the names are not decorated. You just have to make sure your application is using the right version of the DLL.
If the user of the DLL is using C++, you can wrap things in a better way using C++ capabilities (wrap the entire explicitly-loaded library in a wrapper class, e.g.):
class MyDLLWrapper {
public:
MyDLLWrapper(const std::string& moduleName); // load library here
~MyDLLWrapper(); // free library here
FARPROC WINAPI getProcAddress(const std::string& symbolName) const {
return ::GetProcAddress(m_hModule, decorateSymbolName(symbolName));
}
// etc., etc.
private:
HMODULE m_hModule;
// etc.
// ...
};
There's actually a lot more you can do with a wrapper class like this, it's just an example.
On edit: since OP mentioned using PInvoke in the comments - if anyone decides to do this, do not forget to add CallingConvention = CallingConvention.Cdecl
in the [DllImport]
declaration when using PInvoke. __cdecl
might be the default for unmanaged C/C++, but is not the default for managed code.
An option you have to export function names without any decoration (independently from the particular calling convention you used in x86, __stdcall
, __cdecl
, or other) and with the same undecorated name in both x86 and x64 builds, is to export your DLL functions using DEF files.
E.g. you could add a .DEF file like this to your project:
LIBRARY YOURDLL
EXPORTS
Connect @1
AnotherFunction @2
... etc. ...
Repro Follows
Create an empty solution in Visual Studio (I used VS2013), and inside that create an empty Win32 console project (the test client) and an empty Win32 DLL project (the test DLL).
Add this NativeDll.def
.DEF file in the DLL project:
LIBRARY NATIVEDLL
EXPORTS
SayHello @1
Add this NativeDll.cpp
C++ source code in the DLL project:
///////////////////////////////////////////////////////////////////////////////
//
// NativeDll.cpp -- DLL Implementation Code
//
///////////////////////////////////////////////////////////////////////////////
#include <Windows.h>
#include <atldef.h>
#include <atlstr.h>
//
// Test function exported from the DLL
//
extern "C" HRESULT WINAPI SayHello(PCWSTR name)
{
//
// Check for null input string pointer
//
if (name == nullptr)
{
return E_POINTER;
}
try
{
//
// Build a greeting message and show it in a message box
//
CString message;
message.Format(L"Hello %s from the native DLL!", name);
MessageBox(nullptr, message, L"Native DLL Test", MB_OK);
// All right
return S_OK;
}
//
// Catch exceptions and convert them to HRESULT codes
//
catch (const CAtlException& ex)
{
return static_cast<HRESULT>(ex);
}
catch (...)
{
return E_FAIL;
}
}
Add this NativeClient.cpp
C++ source code in the client test project:
///////////////////////////////////////////////////////////////////////////////
//
// NativeClient.cpp -- EXE Test Client Code
//
///////////////////////////////////////////////////////////////////////////////
#include <Windows.h>
//
// Prototype of the function to be loaded from the DLL
//
typedef HRESULT (WINAPI *SayHelloFuncPtr)(PCWSTR /* name */);
//
// Simple RAII wrapper on LoadLibrary()/FreeLibrary().
//
class ScopedDll
{
public:
//
// Load the DLL
//
ScopedDll(PCWSTR dllFilename) throw()
: m_hDll(LoadLibrary(dllFilename))
{
}
//
// Unload the DLL
//
~ScopedDll() throw()
{
if (m_hDll)
{
FreeLibrary(m_hDll);
}
}
//
// Was the DLL loaded successfully?
//
explicit operator bool() const throw()
{
return (m_hDll != nullptr);
}
//
// Get the DLL handle
//
HINSTANCE Get() const throw()
{
return m_hDll;
}
//
// *** IMPLEMENTATION ***
//
private:
//
// The wrapped raw DLL handle
//
HINSTANCE m_hDll;
//
// Ban copy
//
private:
ScopedDll(const ScopedDll&) = delete;
ScopedDll& operator=(const ScopedDll&) = delete;
};
//
// Display an error message box
//
inline void ErrorMessage(PCWSTR errorMessage) throw()
{
MessageBox(nullptr, errorMessage, L"*** ERROR ***", MB_OK | MB_ICONERROR);
}
//
// Test code calling the DLL function via LoadLibrary()/GetProcAddress()
//
int main()
{
//
// Return codes
//
static const int kExitOk = 0;
static const int kExitError = 1;
//
// Load the DLL with LoadLibrary().
//
// NOTE: FreeLibrary() automatically called thanks to RAII!
//
ScopedDll dll(L"NativeDll.dll");
if (!dll)
{
ErrorMessage(L"Can't load the DLL.");
return kExitError;
}
//
// Use GetProcAddress() to access the DLL test function.
// Note the *undecorated* "SayHello" function name!!
//
SayHelloFuncPtr pSayHello
= reinterpret_cast<SayHelloFuncPtr>(GetProcAddress(dll.Get(),
"SayHello"));
if (pSayHello == nullptr)
{
ErrorMessage(L"GetProcAddress() failed.");
return kExitError;
}
//
// Call the DLL test function
//
HRESULT hr = pSayHello(L"Connie");
if (FAILED(hr))
{
ErrorMessage(L"DLL function call returned failure HRESULT.");
return kExitError;
}
//
// All right
//
return kExitOk;
}
Build the whole solution (both the .EXE and the .DLL) and run the native .EXE client.
This is what I get on my computer:
It works without modifications and with the undecorated function name (just SayHello
) on both x86 and x64 builds.