Is there a function in LAPACK, which will give me the elements of a particular submatrix? If so how what is the syntax in C++?
Or do I need to code it up?
There is no function for accessing a submatrix. However, because of the way matrix data is stored in LAPACK routines, you don't need one. This saves a lot of copying, and the data layout was (partially) chosen for this reason:
Recall that a dense (i.e., not banded, triangular, hermitian, etc) matrix in LAPACK is defined by four values:
Most of the time, most people only ever use a leading dimension that is equal to the number of rows; a 3x3 matrix is typically stored like so:
a[0] a[3] a[6]
a[1] a[4] a[7]
a[2] a[5] a[8]
Suppose instead that we wanted a 3x3 submatrix of a huge matrix with leading dimension lda
. Suppose we specifically want the 3x3 submatrix whose top-left corner is located at a(15,42):
. . .
. . .
... a[15+42*lda] a[15+43*lda] a[15+44*lda] ...
... a[16+42*lda] a[16+43*lda] a[16+44*lda] ...
... a[17+42*lda] a[17+43*lda] a[17+44*lda] ...
. . .
. . .
We could copy this 3x3 matrix into contiguous storage, but if we want to pass it as an input (or output) matrix to an LAPACK routine, we don't need to; we only need to define the parameters appropriately. Let's call this submatrix b
; we then define:
// pointer to the top-left corner of b:
float *b = &a[15 + 42*lda];
// number of rows in b:
const int nb = 3;
// number of columns in b:
const int mb = 3;
// leading dimension of b:
const int ldb = lda;
The only thing that might be surprising is the value of ldb
; by using the value lda
of the "big matrix", we can address the submatrix without copying, and operate on it in-place.
However I lied (sort of). Sometimes you really can't operate on a submatrix in place, and genuinely need to copy it. I didn't want to talk about that, because it's rare, and you should use in-place operations whenever possible, but I would feel bad not telling you that it is possible. The routine:
SLACPY(UPLO,M,N,A,LDA,B,LDB)
copies the M
xN
matrix whose top-left corner is A
and is stored with leading dimension LDA
to the M
xN
matrix whose top-left corner is B
and has leading dimension LDB
. The UPLO
parameter indicates whether to copy the upper triangle, lower triangle, or the whole matrix.
In the example I gave above, you would use it like this (assuming the clapack bindings):
...
const int m = 3;
const int n = 3;
float b[9];
const int ldb = 3;
slacpy("A", // anything except "U" or "L" means "copy everything"
&m, // number of rows to copy
&n, // number of columns to copy
&a[15 + 42*lda], // pointer to top-left element to copy
lda, // leading dimension of a (something huge)
b, // pointer to top-left element of destination
ldb); // leading dimension of b (== m, so storage is dense)
...