In other words, find the lowest positive integer that does not exist in the array. The array can contain duplicates and negative numbers as well. This question was asked by Stri
JavaScript:
let findFirstMissingNumber = ( arr ) => {
// Sort array and find the index of the lowest positive element.
let sortedArr = arr.sort( (a,b) => a-b );
const lowestPositiveIndex = arr.findIndex( (element) => element > 0 );
// Starting from the lowest positive element
// check upwards if we have the next integer in the array.
let i = lowestPositiveIndex;
while( i < sortedArr.length ) {
if ( sortedArr[ i + 1 ] !== sortedArr[ i ] + 1 ) {
return sortedArr[ i ] + 1
} else {
i += 1;
}
}
}
console.log( findFirstMissingNumber( [3, 4, -1, 1, 1] ) ); // should give 2
console.log( findFirstMissingNumber( [0, 1, 2, 0] ) ); // should give 3
I solved the problem using set in python3. It is very simple 6LOC. time complexity: O(n).
Remember: Membership check in set is O(1)
def first_missing_positive_integer(arr):
arr = set(arr)
for i in range(1, len(arr)+2):
if i not in arr:
return i
This is in Java. Time complexity f O(N) and space complexity O(1)
private static int minimum_positive_integer(int[] arr) {
int i = 0;
int j = arr.length - 1;
//splitting array
while (i < j) {
if (arr[i] > 0) {
i++;
}
if (arr[j] <= 0) {
j--;
}
if (arr[i] <= 0 && arr[j] > 0) {
int t = arr[i];
arr[i] = arr[j];
arr[j] = t;
i++;
j--;
}
}
int len_positive = i;
if (arr[i] > 0) len_positive++;
for (i = 0; i < len_positive; i++) {
int abs = Math.abs(arr[i]);
if (abs <= len_positive) {
int index = abs - 1;
arr[index] = -abs;
}
}
for (i = 0; i < len_positive; i++) {
if(arr[i] > 0) return i + 1;
}
return len_positive + 1;
}
public int FindMissing(){
var list = new int[] { 6, -6, 4, 5 };
list = list.OrderBy(x => x).ToArray();
var maxValue = 0;
for (int i = 0; i < list.Length; i++)
{
if (list[i] <= 0)
{
continue;
}
if (i == list.Length - 1 ||
list[i] + 1 != list[i + 1])
{
maxValue = list[i] + 1;
break;
}
}
return maxValue;
}
Here's a Python 3 implementation of pmcarpan's answer.
def missing_int(nums: MutableSequence[int]) -> int:
# If empty array or doesn't have 1, return 1
if not next((x for x in nums if x == 1), 0):
return 1
lo: int = 0
hi: int = len(nums) - 1
i: int = 0
pivot: int = 1
while i <= hi:
if nums[i] < pivot:
swap(nums, i, hi)
hi -= 1
elif nums[i] > pivot:
swap(nums, i, lo)
i += 1
lo += 1
else:
i += 1
x = 0
while x <= hi: # hi is the index of the last positive number
y: int = abs(nums[x])
if 0 < y <= hi + 1 and nums[y - 1] > 0: # Don't flip sign if already negative
nums[y - 1] *= -1
x += 1
return next((i for i, v in enumerate(nums[:hi + 1]) if v >= 0), x) + 1
Tests:
def test_missing_int(self):
assert func.missing_int([1, 2, 1, 0]) == 3
assert func.missing_int([3, 4, -1, 1]) == 2
assert func.missing_int([7, 8, 9, 11, 12]) == 1
assert func.missing_int([1]) == 2
assert func.missing_int([]) == 1
assert func.missing_int([0]) == 1
assert func.missing_int([2, 1]) == 3
assert func.missing_int([-1, -2, -3]) == 1
assert func.missing_int([1, 1]) == 2
assert func.missing_int([1000, -1]) == 1
assert func.missing_int([-10, -3, -100, -1000, -239, 1]) == 2
assert func.missing_int([1, 1]) == 2
I didn't test it in detail, but for sorted array here is how I would approach it, any improvements are welcome. constrains:
constant space
solution:
start with lowest positive integer (i.e. lpi <- 1)
while parsing the array, if lpi is already in the array, increment it
lpi is now the lowest positive integer not available in the array
simple python function will be as follows:
def find_lpi(arr):
lpi = 1
for i in arr:
if lpi == i:
lpi += 1
return lpi
if the array is unsorted, the following could be alternative solution.
first create a binary array, X, of zeroes with length max(arr). For each item in the array mark the index of the X, as 1 return the smallest index with 0
the following is a simple implementation satisfying
constant space complexity constraints.
def find_lpi(arr):
x = [0 for x in range(max(arr)+1)]
for i in arr:
x[i] = 1
for i in range(1,len(x)):
if x[i] ==0:
return i
return len(x)