Why does Pandas inner join give ValueError: len(left_on) must equal the number of levels in the index of “right”?

后端 未结 2 929
情深已故
情深已故 2021-02-01 00:15

I\'m trying to inner join DataFrame A to DataFrame B and am running into an error.

Here\'s my join statement:

merged = DataFrameA.join(DataFrameB, on=[\'         


        
相关标签:
2条回答
  • 2021-02-01 01:06

    Here is another way of performing join. Unlike the answer verified, this is a more general answer applicable to all other types of join.

    Inner Join

    inner join can also be performed by explicitly mentioning it as follows in how:

    pd.merge(df1, df2, on='filename', how='inner')
    

    The same methodology aplies for the other types of join:

    OuterJoin

    pd.merge(df1, df2, on='filename', how='outer')
    

    Left Join

    pd.merge(df1, df2, on='filename', how='left')
    

    Right Join

    pd.merge(df1, df2, on='filename', how='right')
    
    0 讨论(0)
  • 2021-02-01 01:15

    use merge if you are not joining on the index:

    merged = pd.merge(DataFrameA,DataFrameB, on=['Code','Date'])
    

    Follow up to question below:

    Here is a reproducible example:

    import pandas as pd
    # create some timestamps for date column
    i = pd.to_datetime(pd.date_range('20140601',periods=2))
    
    #create two dataframes to merge
    df = pd.DataFrame({'code': ['ABC','EFG'], 'date':i,'col1': [10,100]})
    df2 = pd.DataFrame({'code': ['ABC','EFG'], 'date':i,'col2': [10,200]})
    
    #merge on columns (default join is inner)
    pd.merge(df, df2, on =['code','date'])
    

    This results is:

        code    col1    date    col2
    0   ABC     10      2014-06-01  10
    1   EFG     100     2014-06-02  200
    

    What happens when you run this code?

    0 讨论(0)
提交回复
热议问题