Speed-improvement on large pandas read_csv with datetime index

前端 未结 3 483
臣服心动
臣服心动 2021-01-31 23:47

I have enormous files that look like this:

05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25

05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25

I can easily rea

相关标签:
3条回答
  • 2021-01-31 23:50

    An improvement of previous solution of Michael WS:

    • conversion to pandas.Timestamp is better to perform outside the Cython code
    • atoi and processing native-c strings is a little-bit faster than python funcs
    • the number of datetime-lib calls is reduced to one from 2 (+1 occasional for date)
    • microseconds are also processed

    NB! The date order in this code is day/month/year.

    All in all the code seems to be approximately 10 times faster than the original convert_date_cython. However if this is called after read_csv then on SSD hard drive the difference is total time is only few percents due to the reading overhead. I would guess that on regular HDD the difference would be even smaller.

    cimport numpy as np
    import datetime
    import numpy as np
    import pandas as pd
    from libc.stdlib cimport atoi, malloc, free 
    from libc.string cimport strcpy
    
    ### Modified code from Michael WS:
    ### https://stackoverflow.com/a/15812787/2447082
    
    def convert_date_fast(np.ndarray date_vec, np.ndarray time_vec):
        cdef int i, d_year, d_month, d_day, t_hour, t_min, t_sec, t_ms
        cdef int N = len(date_vec)
        cdef np.ndarray out_ar = np.empty(N, dtype=np.object)  
        cdef bytes prev_date = <bytes> 'xx/xx/xxxx'
        cdef char *date_str = <char *> malloc(20)
        cdef char *time_str = <char *> malloc(20)
    
        for i in range(N):
            if date_vec[i] != prev_date:
                prev_date = date_vec[i] 
                strcpy(date_str, prev_date) ### xx/xx/xxxx
                date_str[2] = 0 
                date_str[5] = 0 
                d_year = atoi(date_str+6)
                d_month = atoi(date_str+3)
                d_day = atoi(date_str)
    
            strcpy(time_str, time_vec[i])   ### xx:xx:xx:xxxxxx
            time_str[2] = 0
            time_str[5] = 0
            time_str[8] = 0
            t_hour = atoi(time_str)
            t_min = atoi(time_str+3)
            t_sec = atoi(time_str+6)
            t_ms = atoi(time_str+9)
    
            out_ar[i] = datetime.datetime(d_year, d_month, d_day, t_hour, t_min, t_sec, t_ms)
        free(date_str)
        free(time_str)
        return pd.to_datetime(out_ar)
    
    0 讨论(0)
  • 2021-01-31 23:59

    I got an incredible speedup (50X) with the following cython code:

    call from python: timestamps = convert_date_cython(df["date"].values, df["time"].values)

    cimport numpy as np
    import pandas as pd
    import datetime
    import numpy as np
    def convert_date_cython(np.ndarray date_vec, np.ndarray time_vec):
        cdef int i
        cdef int N = len(date_vec)
        cdef out_ar = np.empty(N, dtype=np.object)
        date = None
        for i in range(N):
            if date is None or date_vec[i] != date_vec[i - 1]:
                dt_ar = map(int, date_vec[i].split("/"))
                date = datetime.date(dt_ar[2], dt_ar[0], dt_ar[1])
            time_ar = map(int, time_vec[i].split(".")[0].split(":"))
            time = datetime.time(time_ar[0], time_ar[1], time_ar[2])
            out_ar[i] = pd.Timestamp(datetime.datetime.combine(date, time))
        return out_ar
    
    0 讨论(0)
  • 2021-02-01 00:02

    The cardinality of datetime strings is not huge. For example, number of time strings in the format %H-%M-%S is 24 * 60 * 60 = 86400. If the number of rows of your dataset is much larger than this or your data contains lots of duplicate timestamps, adding a cache in the parsing process could substantially speed things up.

    For those who do not have Cython available, here's an alternative solution in pure python:

    import numpy as np
    import pandas as pd
    from datetime import datetime
    
    
    def parse_datetime(dt_array, cache=None):
        if cache is None:
            cache = {}
        date_time = np.empty(dt_array.shape[0], dtype=object)
        for i, (d_str, t_str) in enumerate(dt_array):
            try:
                year, month, day = cache[d_str]
            except KeyError:
                year, month, day = [int(item) for item in d_str[:10].split('-')]
                cache[d_str] = year, month, day
            try:
                hour, minute, sec = cache[t_str]
            except KeyError:
                hour, minute, sec = [int(item) for item in t_str.split(':')]
                cache[t_str] = hour, minute, sec
            date_time[i] = datetime(year, month, day, hour, minute, sec)
        return pd.to_datetime(date_time)
    
    
    def read_csv(filename, cache=None):
        df = pd.read_csv(filename)
        df['date_time'] = parse_datetime(df.loc[:, ['date', 'time']].values, cache=cache)
        return df.set_index('date_time')
    

    With the following particular data set, the speedup is 150x+:

    $ ls -lh test.csv
    -rw-r--r--  1 blurrcat  blurrcat   1.2M Apr  8 12:06 test.csv
    $ head -n 4 data/test.csv
    user_id,provider,date,time,steps
    5480312b6684e015fc2b12bc,fitbit,2014-11-02 00:00:00,17:47:00,25
    5480312b6684e015fc2b12bc,fitbit,2014-11-02 00:00:00,17:09:00,4
    5480312b6684e015fc2b12bc,fitbit,2014-11-02 00:00:00,19:10:00,67
    

    In ipython:

    In [1]: %timeit pd.read_csv('test.csv', parse_dates=[['date', 'time']])
    1 loops, best of 3: 10.3 s per loop
    In [2]: %timeit read_csv('test.csv', cache={})
    1 loops, best of 3: 62.6 ms per loop
    

    To limit memory usage, simply replace the dict cache with something like a LRU.

    0 讨论(0)
提交回复
热议问题