I have a database of 20 million users and connections between those people. How can I prove the concept of \"Six degrees of separation\" concept in the most efficient w
I think the most efficient way (worst case) is almost N^3. Build an adjacency matrix, and then take that matrix ^2, ^3, ^4, ^5 and ^6. Look for any entries in the graph that are 0 for matrix through matrix^6.
Heuristically you can try to single out subgraphs ( large clumps of people who are only connected to other clumps by a relatively small number of "bridge" nodes ) but there's absolutely no guarantee you'll have any.
You can probably fit the graph in memory (in the representation that each vertex knows a list of its neighbors).
Then, from each vertex n, you can run a breadth-first search (using a queue) to the depth of 6 and count number of vertices visited. If not all vertices are visited, you have disproved the theorem. In other case, continue with next vertex n.
This is O(N*(N + #edges)) = N*(N + N*100) = 100N^2, if user has 100 connections on average, Which is not ideal for N=20 million. I wonder if the mentioned libraries can compute the diameter in better time complexity (general algorithm is O(N^3)).
The computations for individual vertices are independent, so they could be done in parallel.
A little heuristic: start with vertices that have the lowest degree (better chance to disprove the theorem).
You just want to measure the diameter of the graph. This is exactly the metric to find out the seperation between the most-distantly-connected nodes in a graph.
Lots of algorithms on Google, Boost graph too.
Well a better answer has already been given, but off the top of my head I would have gone with the Floyd-Warshall all pairs shortest path algorithm, which is O(n^3). I'm unsure of the complexity of the graph diameter algorithm, but it "sounds" like this would also be O(n^3). I'd like clarification on this if anyone knows.
On a side note, do you really have such a database? Scary.