How to create a DataFrame from a text file in Spark

后端 未结 8 1060
滥情空心
滥情空心 2021-01-31 19:03

I have a text file on HDFS and I want to convert it to a Data Frame in Spark.

I am using the Spark Context to load the file and then try to generate individual columns f

相关标签:
8条回答
  • 2021-01-31 19:32

    You can read a file to have an RDD and then assign schema to it. Two common ways to creating schema are either using a case class or a Schema object [my preferred one]. Follows the quick snippets of code that you may use.

    Case Class approach

    case class Test(id:String,name:String)
    val myFile = sc.textFile("file.txt")
    val df= myFile.map( x => x.split(";") ).map( x=> Test(x(0),x(1)) ).toDF()
    

    Schema Approach

    import org.apache.spark.sql.types._
    val schemaString = "id name"
    val fields = schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, nullable=true))
    val schema = StructType(fields)
    
    val dfWithSchema = sparkSess.read.option("header","false").schema(schema).csv("file.txt")
    dfWithSchema.show()
    

    The second one is my preferred approach since case class has a limitation of max 22 fields and this will be a problem if your file has more than 22 fields!

    0 讨论(0)
  • 2021-01-31 19:37

    You will not able to convert it into data frame until you use implicit conversion.

    val sqlContext = new SqlContext(new SparkContext())
    
    import sqlContext.implicits._
    

    After this only you can convert this to data frame

    case class Test(id:String,filed2:String)
    
    val myFile = sc.textFile("file.txt")
    
    val df= myFile.map( x => x.split(";") ).map( x=> Test(x(0),x(1)) ).toDF()
    
    0 讨论(0)
  • 2021-01-31 19:45

    Update - as of Spark 1.6, you can simply use the built-in csv data source:

    spark: SparkSession = // create the Spark Session
    val df = spark.read.csv("file.txt")
    

    You can also use various options to control the CSV parsing, e.g.:

    val df = spark.read.option("header", "false").csv("file.txt")
    

    For Spark version < 1.6: The easiest way is to use spark-csv - include it in your dependencies and follow the README, it allows setting a custom delimiter (;), can read CSV headers (if you have them), and it can infer the schema types (with the cost of an extra scan of the data).

    Alternatively, if you know the schema you can create a case-class that represents it and map your RDD elements into instances of this class before transforming into a DataFrame, e.g.:

    case class Record(id: Int, name: String)
    
    val myFile1 = myFile.map(x=>x.split(";")).map {
      case Array(id, name) => Record(id.toInt, name)
    } 
    
    myFile1.toDF() // DataFrame will have columns "id" and "name"
    
    0 讨论(0)
  • 2021-01-31 19:47

    I know I am quite late to answer this but I have come up with a different answer:

    val rdd = sc.textFile("/home/training/mydata/file.txt")
    
    val text = rdd.map(lines=lines.split(",")).map(arrays=>(ararys(0),arrays(1))).toDF("id","name").show 
    
    0 讨论(0)
  • 2021-01-31 19:49
    val df = spark.read.textFile("abc.txt")
    
    case class Abc (amount:Int, types: String, id:Int)  //columns and data types
    
    val df2 = df.map(rec=>Amount(rec(0).toInt, rec(1), rec(2).toInt))
    rdd2.printSchema
    

    root
     |-- amount: integer (nullable = true)
     |-- types: string (nullable = true)
     |-- id: integer (nullable = true)
    
    0 讨论(0)
  • 2021-01-31 19:51

    I have given different ways to create DataFrame from text file

    val conf = new SparkConf().setAppName(appName).setMaster("local")
    val sc = SparkContext(conf)
    

    raw text file

    val file = sc.textFile("C:\\vikas\\spark\\Interview\\text.txt")
    val fileToDf = file.map(_.split(",")).map{case Array(a,b,c) => 
    (a,b.toInt,c)}.toDF("name","age","city")
    fileToDf.foreach(println(_))
    

    spark session without schema

    import org.apache.spark.sql.SparkSession
    val sparkSess = 
    SparkSession.builder().appName("SparkSessionZipsExample")
    .config(conf).getOrCreate()
    
    val df = sparkSess.read.option("header", 
    "false").csv("C:\\vikas\\spark\\Interview\\text.txt")
    df.show()
    

    spark session with schema

    import org.apache.spark.sql.types._
    val schemaString = "name age city"
    val fields = schemaString.split(" ").map(fieldName => StructField(fieldName, 
    StringType, nullable=true))
    val schema = StructType(fields)
    
    val dfWithSchema = sparkSess.read.option("header", 
    "false").schema(schema).csv("C:\\vikas\\spark\\Interview\\text.txt")
    dfWithSchema.show()
    

    using sql context

    import org.apache.spark.sql.SQLContext
    
    val fileRdd = 
    sc.textFile("C:\\vikas\\spark\\Interview\\text.txt").map(_.split(",")).map{x 
    => org.apache.spark.sql.Row(x:_*)}
    val sqlDf = sqlCtx.createDataFrame(fileRdd,schema)
    sqlDf.show()
    
    0 讨论(0)
提交回复
热议问题