I posted this question to Cross Validated forum and later realized may be this would find appropriate audience in stackoverlfow instead.
I am looking for a way I can use
For reference purpose, if you use the statsmodels
formula API and/or use the fit_regularized
method, you can modify @David Dale's wrapper class in this way.
import pandas as pd
from sklearn.base import BaseEstimator, RegressorMixin
from statsmodels.formula.api import glm as glm_sm
# This is an example wrapper for statsmodels GLM
class SMWrapper(BaseEstimator, RegressorMixin):
def __init__(self, family, formula, alpha, L1_wt):
self.family = family
self.formula = formula
self.alpha = alpha
self.L1_wt = L1_wt
self.model = None
self.result = None
def fit(self, X, y):
data = pd.concat([pd.DataFrame(X), pd.Series(y)], axis=1)
data.columns = X.columns.tolist() + ['y']
self.model = glm_sm(self.formula, data, family=self.family)
self.result = self.model.fit_regularized(alpha=self.alpha, L1_wt=self.L1_wt, refit=True)
return self.result
def predict(self, X):
return self.result.predict(X)
Indeed, you cannot use cross_val_score
directly on statsmodels
objects, because of different interface: in statsmodels
However, you can write a simple wrapper to make statsmodels
objects look like sklearn
estimators:
import statsmodels.api as sm
from sklearn.base import BaseEstimator, RegressorMixin
class SMWrapper(BaseEstimator, RegressorMixin):
""" A universal sklearn-style wrapper for statsmodels regressors """
def __init__(self, model_class, fit_intercept=True):
self.model_class = model_class
self.fit_intercept = fit_intercept
def fit(self, X, y):
if self.fit_intercept:
X = sm.add_constant(X)
self.model_ = self.model_class(y, X)
self.results_ = self.model_.fit()
def predict(self, X):
if self.fit_intercept:
X = sm.add_constant(X)
return self.results_.predict(X)
This class contains correct fit
and predict
methods, and can be used with sklearn
, e.g. cross-validated or included into a pipeline. Like here:
from sklearn.datasets import make_regression
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression
X, y = make_regression(random_state=1, n_samples=300, noise=100)
print(cross_val_score(SMWrapper(sm.OLS), X, y, scoring='r2'))
print(cross_val_score(LinearRegression(), X, y, scoring='r2'))
You can see that the output of two models is identical, because they are both OLS models, cross-validated in the same way.
[0.28592315 0.37367557 0.47972639]
[0.28592315 0.37367557 0.47972639]
Though I think this is not technically scikit-learn, there is the package pmdarima that wraps statsmodel and provides a scikit-learn like interface.
Following the suggestion of David (which gave me an error, complaining about missing function get_parameters
) and the scikit learn documentation, I created the following wrapper for a linear regression.
It has the same interface of sklearn.linear_model.LinearRegression
but in addition has also the function summary()
, which gives the info about p-values, R2 and other statistics, as in statsmodels.OLS
.
import statsmodels.api as sm
from sklearn.base import BaseEstimator, RegressorMixin
import pandas as pd
import numpy as np
from sklearn.utils.multiclass import check_classification_targets
from sklearn.utils.validation import check_X_y, check_is_fitted, check_array
from sklearn.utils.multiclass import unique_labels
from sklearn.utils.estimator_checks import check_estimator
class MyLinearRegression(BaseEstimator, RegressorMixin):
def __init__(self, fit_intercept=True):
self.fit_intercept = fit_intercept
"""
Parameters
------------
column_names: list
It is an optional value, such that this class knows
what is the name of the feature to associate to
each column of X. This is useful if you use the method
summary(), so that it can show the feature name for each
coefficient
"""
def fit(self, X, y, column_names=() ):
if self.fit_intercept:
X = sm.add_constant(X)
# Check that X and y have correct shape
X, y = check_X_y(X, y)
self.X_ = X
self.y_ = y
if len(column_names) != 0:
cols = column_names.copy()
cols = list(cols)
X = pd.DataFrame(X)
cols = column_names.copy()
cols.insert(0,'intercept')
print('X ', X)
X.columns = cols
self.model_ = sm.OLS(y, X)
self.results_ = self.model_.fit()
return self
def predict(self, X):
# Check is fit had been called
check_is_fitted(self, 'model_')
# Input validation
X = check_array(X)
if self.fit_intercept:
X = sm.add_constant(X)
return self.results_.predict(X)
def get_params(self, deep = False):
return {'fit_intercept':self.fit_intercept}
def summary(self):
print(self.results_.summary() )
Example of use:
cols = ['feature1','feature2']
X_train = df_train[cols].values
X_test = df_test[cols].values
y_train = df_train['label']
y_test = df_test['label']
model = MyLinearRegression()
model.fit(X_train, y_train)
model.summary()
model.predict(X_test)
If you want to show the names of the columns, you can call
model.fit(X_train, y_train, column_names=cols)
To use it in cross_validation:
from sklearn.model_selection import cross_val_score
scores = cross_val_score(MyLinearRegression(), X_train, y_train, cv=10, scoring='neg_mean_squared_error')
scores