Here is my reasoning. Correct me if I'm wrong.
(i) ``Breaking'' a cryptosystem is necessarily a problem in NP and co-NP. (Breaking a cryptosystem involves inverting the encryption function, which is one-to-one and computable in polynomial-time. So, given the ciphertext, the plaintext is a certificate that can be verified in polynomial time. Thus querying the plaintext based on the ciphertext is in NP and in co-NP.)
(ii) If there is an NP-hard problem in NP and co-NP, then NP = co-NP. (This problem would be NP-complete and in co-NP. Since any NP language is reducible to this co-NP language, NP is a subset of co-NP. Now use symmetry: any language L in co-NP has -L (its compliment) in NP, whence -L is in co-NP---that is L = --L is in NP.)
(iii) I think that it is generally believed that NP != co-NP, as otherwise there are polynomial-sized proofs that boolean formulas are not satisfiable.
Conclusion: Complexity-theoretic conjectures imply that NP-hard cryptosystems don't exist.
(Otherwise, you have an NP-hard problem in NP and co-NP, whence NP = co-NP---which is believed to be false.)