Simple line plots using seaborn

前端 未结 3 1617
渐次进展
渐次进展 2021-01-31 13:59

I\'m trying to plot a ROC curve using seaborn (python). With matplotlib I simply use the function plot:

plt.plot(one_minus_specificity, sensitivity,         


        
相关标签:
3条回答
  • 2021-01-31 14:06

    Since seaborn also uses matplotlib to do its plotting you can easily combine the two. If you only want to adopt the styling of seaborn the set_style function should get you started:

    import matplotlib.pyplot as plt
    import numpy as np
    import seaborn as sns
    
    sns.set_style("darkgrid")
    plt.plot(np.cumsum(np.random.randn(1000,1)))
    plt.show()
    

    Result:

    enter image description here

    0 讨论(0)
  • 2021-01-31 14:13

    It's possible to get this done using seaborn.lineplot() but it involves some additional work of converting numpy arrays to pandas dataframe. Here's a complete example:

    # imports
    import seaborn as sns
    import numpy as np
    import pandas as pd
    
    # inputs
    In [41]: num = np.array([1, 2, 3, 4, 5])
    In [42]: sqr = np.array([1, 4, 9, 16, 25])
    
    # convert to pandas dataframe
    In [43]: d = {'num': num, 'sqr': sqr}
    In [44]: pdnumsqr = pd.DataFrame(d)
    
    # plot using lineplot
    In [45]: sns.set(style='darkgrid')
    In [46]: sns.lineplot(x='num', y='sqr', data=pdnumsqr)
    Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0x7f583c05d0b8>
    

    And we get the following plot:

    0 讨论(0)
  • 2021-01-31 14:31

    Yes, you can do the same in Seaborn directly. This is done with tsplot() which allows either a single array as input, or two arrays where the other is 'time' i.e. x-axis.

    import seaborn as sns
    
    data =  [1,5,3,2,6] * 20
    time = range(100)
    
    sns.tsplot(data, time)
    

    0 讨论(0)
提交回复
热议问题