Given the following sentence:
The old oak tree from India fell down.
How can I get the following parse tree representation of the sentence usin
Older question, but you can use nltk together with the bllipparser. Here is a longer example from nltk. After some fiddling I myself used the following:
To install (with nltk already installed):
sudo python3 -m nltk.downloader bllip_wsj_no_aux
pip3 install bllipparser
To use:
from nltk.data import find
from bllipparser import RerankingParser
model_dir = find('models/bllip_wsj_no_aux').path
parser = RerankingParser.from_unified_model_dir(model_dir)
best = parser.parse("The old oak tree from India fell down.")
print(best.get_reranker_best())
print(best.get_parser_best())
Output:
-80.435259246021 -23.831876011253 (S1 (S (NP (NP (DT The) (JJ old) (NN oak) (NN tree)) (PP (IN from) (NP (NNP India)))) (VP (VBD fell) (PRT (RP down))) (. .)))
-79.703612178593 -24.505514522222 (S1 (S (NP (NP (DT The) (JJ old) (NN oak) (NN tree)) (PP (IN from) (NP (NNP India)))) (VP (VBD fell) (ADVP (RB down))) (. .)))
Here is alternative solution using StanfordCoreNLP
instead of nltk
. There are few library that build on top of StanfordCoreNLP
, I personally use pycorenlp to parse the sentence.
First you have to download stanford-corenlp-full folder where you have *.jar
file inside. And run the server inside the folder (default port is 9000).
export CLASSPATH="`find . -name '*.jar'`"
java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer [port?] # run server
Then in Python, you can run the following in order to tag the sentence.
from pycorenlp import StanfordCoreNLP
nlp = StanfordCoreNLP('http://localhost:9000')
text = "The old oak tree from India fell down."
output = nlp.annotate(text, properties={
'annotators': 'parse',
'outputFormat': 'json'
})
print(output['sentences'][0]['parse']) # tagged output sentence