Rotate histogram in R or overlay a density in a barplot

后端 未结 5 842
一个人的身影
一个人的身影 2021-01-31 12:01

I would like to rotate a histogram in R, plotted by hist(). The question is not new, and in several forums I have found that it is not possible. However, all these answers date

相关标签:
5条回答
  • 2021-01-31 12:29

    When using ggplot, flipping axes works very well. See for example this example which shows how to do this for a boxplot, but it works equally well for a histogram I assume. In ggplot one can quite easily overlay different plot types, or geometries in ggplot2 jargon. So combining a density plot and a histogram should be easy.

    0 讨论(0)
  • 2021-01-31 12:34

    I'm not sure whether it is of interest, but I sometimes want to use horizontal histograms without any packages and be able to write or draw at any position of the graphic.

    That's why I wrote the following function, with examples provided below. If anyone knows a package to which this would fit well, please write me: berry-b at gmx.de

    Please be sure not to have a variable hpos in your workspace, as it will be overwritten with a function. (Yes, for a package I would need to insert some safety parts in the function).

    horiz.hist <- function(Data, breaks="Sturges", col="transparent", las=1, 
    ylim=range(HBreaks), labelat=pretty(ylim), labels=labelat, border=par("fg"), ... )
      {a <- hist(Data, plot=FALSE, breaks=breaks)
      HBreaks <- a$breaks
      HBreak1 <- a$breaks[1]
      hpos <<- function(Pos) (Pos-HBreak1)*(length(HBreaks)-1)/ diff(range(HBreaks))
      barplot(a$counts, space=0, horiz=T, ylim=hpos(ylim), col=col, border=border,...)      
      axis(2, at=hpos(labelat), labels=labels, las=las, ...) 
      print("use hpos() to address y-coordinates") }
    

    For examples

    # Data and basic concept
    set.seed(8); ExampleData <- rnorm(50,8,5)+5
    hist(ExampleData)
    horiz.hist(ExampleData, xlab="absolute frequency") 
    # Caution: the labels at the y-axis are not the real coordinates!
    # abline(h=2) will draw above the second bar, not at the label value 2. Use hpos:
    abline(h=hpos(11), col=2)
    
    # Further arguments
    horiz.hist(ExampleData, xlim=c(-8,20)) 
    horiz.hist(ExampleData, main="the ... argument worked!", col.axis=3) 
    hist(ExampleData, xlim=c(-10,40)) # with xlim
    horiz.hist(ExampleData, ylim=c(-10,40), border="red") # with ylim
    horiz.hist(ExampleData, breaks=20, col="orange")
    axis(2, hpos(0:10), labels=F, col=2) # another use of hpos()
    

    One shortcoming: the function doesn't work with breakpoints provided as a vector with different widths of the bars.

    0 讨论(0)
  • 2021-01-31 12:44

    Thank you, Tim and Paul. You made me think harder and use what hist() actually provides.

    This is my solution now (with great help from Alex Pl.):

    scatterBar.Norm <- function(x,y) {
     zones <- matrix(c(2,0,1,3), ncol=2, byrow=TRUE)
     layout(zones, widths=c(5/7,2/7), heights=c(2/7,5/7))
     xrange <- range(x)
     yrange <- range(y)
     par(mar=c(3,3,1,1))
     plot(x, y, xlim=xrange, ylim=yrange, xlab="", ylab="", cex=0.5)
     xhist <- hist(x, plot=FALSE, breaks=seq(from=min(x), to=max(x), length.out=20))
     yhist <- hist(y, plot=FALSE, breaks=seq(from=min(y), to=max(y), length.out=20))
     top <- max(c(xhist$density, yhist$density))
     par(mar=c(0,3,1,1))
     barplot(xhist$density, axes=FALSE, ylim=c(0, top), space=0)
     x.xfit <- seq(min(x),max(x),length.out=40)
     x.yfit <- dnorm(x.xfit, mean=mean(x), sd=sd(x))
     x.xscalefactor <- x.xfit / seq(from=0, to=19, length.out=40)
     lines(x.xfit/x.xscalefactor, x.yfit, col="red")
     par(mar=c(3,0,1,1))
     barplot(yhist$density, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE)
     y.xfit <- seq(min(y),max(y),length.out=40)
     y.yfit <- dnorm(y.xfit, mean=mean(y), sd=sd(y))
     y.xscalefactor <- y.xfit / seq(from=0, to=19, length.out=40)
     lines(y.yfit, y.xfit/y.xscalefactor, col="red")
    }
    

    For examples:

    require(MASS)
    #Sigma <- matrix(c(2.25, 0.8, 0.8, 1), 2, 2)
    Sigma <- matrix(c(1, 0.8, 0.8, 1), 2, 2)
    mvnorm <- mvrnorm(1000, c(0,0), Sigma) ; scatterBar.Norm(mvnorm[,1], mvnorm[,2])
    

    An asymmetric Sigma leads to a somewhat bulkier histogram of the respective axis.

    The code is left deliberately "unelegant" in order to increase comprehensibility (for myself when I revisit it later...).

    Niels

    0 讨论(0)
  • 2021-01-31 12:46

    It may be helpful to know that the hist() function invisibly returns all the information that you need to reproduce what it does using simpler plotting functions, like rect().

        vals <- rnorm(10)
        A <- hist(vals)
        A
        $breaks
        [1] -1.5 -1.0 -0.5  0.0  0.5  1.0  1.5
    
        $counts
        [1] 1 3 3 1 1 1
    
        $intensities
        [1] 0.2 0.6 0.6 0.2 0.2 0.2
    
        $density
        [1] 0.2 0.6 0.6 0.2 0.2 0.2
    
        $mids
        [1] -1.25 -0.75 -0.25  0.25  0.75  1.25
    
        $xname
        [1] "vals"
    
        $equidist
        [1] TRUE
    
        attr(,"class")
        [1] "histogram"
    

    You can create the same histogram manually like this:

        plot(NULL, type = "n", ylim = c(0,max(A$counts)), xlim = c(range(A$breaks)))
        rect(A$breaks[1:(length(A$breaks) - 1)], 0, A$breaks[2:length(A$breaks)], A$counts)
    

    With those parts, you can flip the axes however you like:

        plot(NULL, type = "n", xlim = c(0, max(A$counts)), ylim = c(range(A$breaks)))
        rect(0, A$breaks[1:(length(A$breaks) - 1)], A$counts, A$breaks[2:length(A$breaks)])
    

    For similar do-it-yourselfing with density(), see: Axis-labeling in R histogram and density plots; multiple overlays of density plots

    0 讨论(0)
  • 2021-01-31 12:49
    scatterBarNorm <- function(x, dcol="blue", lhist=20, num.dnorm=5*lhist, ...){
        ## check input
        stopifnot(ncol(x)==2)
        ## set up layout and graphical parameters
        layMat <- matrix(c(2,0,1,3), ncol=2, byrow=TRUE)
        layout(layMat, widths=c(5/7, 2/7), heights=c(2/7, 5/7))
        ospc <- 0.5 # outer space
        pext <- 4 # par extension down and to the left
        bspc <- 1 # space between scatter plot and bar plots
        par. <- par(mar=c(pext, pext, bspc, bspc),
                    oma=rep(ospc, 4)) # plot parameters
        ## scatter plot
        plot(x, xlim=range(x[,1]), ylim=range(x[,2]), ...)
        ## 3) determine barplot and height parameter
        ## histogram (for barplot-ting the density)
        xhist <- hist(x[,1], plot=FALSE, breaks=seq(from=min(x[,1]), to=max(x[,1]),
                                         length.out=lhist))
        yhist <- hist(x[,2], plot=FALSE, breaks=seq(from=min(x[,2]), to=max(x[,2]),
                                         length.out=lhist)) # note: this uses probability=TRUE
        ## determine the plot range and all the things needed for the barplots and lines
        xx <- seq(min(x[,1]), max(x[,1]), length.out=num.dnorm) # evaluation points for the overlaid density
        xy <- dnorm(xx, mean=mean(x[,1]), sd=sd(x[,1])) # density points
        yx <- seq(min(x[,2]), max(x[,2]), length.out=num.dnorm)
        yy <- dnorm(yx, mean=mean(x[,2]), sd=sd(x[,2]))
        ## barplot and line for x (top)
        par(mar=c(0, pext, 0, 0))
        barplot(xhist$density, axes=FALSE, ylim=c(0, max(xhist$density, xy)),
                space=0) # barplot
        lines(seq(from=0, to=lhist-1, length.out=num.dnorm), xy, col=dcol) # line
        ## barplot and line for y (right)
        par(mar=c(pext, 0, 0, 0))
        barplot(yhist$density, axes=FALSE, xlim=c(0, max(yhist$density, yy)),
                space=0, horiz=TRUE) # barplot
        lines(yy, seq(from=0, to=lhist-1, length.out=num.dnorm), col=dcol) # line
        ## restore parameters
        par(par.)
    }
    
    require(mvtnorm)
    X <- rmvnorm(1000, c(0,0), matrix(c(1, 0.8, 0.8, 1), 2, 2))
    scatterBarNorm(X, xlab=expression(italic(X[1])), ylab=expression(italic(X[2])))
    

    enter image description here

    0 讨论(0)
提交回复
热议问题