I\'m using an image in a canvas element as a texture in Three.js, performing image manipulations on the canvas using JavaScript, and then calling needsUpdate() on the texture. T
Render to texture and Render to another scene as listed above are the same thing, and are the technique you want. To explain:
In vanilla WebGL the way you do this kind of thing is by creating a framebuffer object (FBO) from scratch, binding a texture to it, and rendering it with the shader of your choice. Concepts like "scene" and "camera" aren't involved, and it's kind of a complicated process. Here's an example:
http://learningwebgl.com/blog/?p=1786
But this also happens to be essentially what Three.js does when you use it to render a scene with a camera: the renderer outputs to a framebuffer, which in its basic usage goes straight to the screen. So if you instruct it to render to a new WebGLRenderTarget instead, you can use whatever the camera sees as the input texture of a second material. All the complicated stuff is still happening, but behind the scenes, which is the beauty of Three.js. :)
So: To replicate a WebGL setup of an FBO containing a single rendered texture, as mentioned in the comments, just make a new scene containing an orthographic camera and a single plane with a material using the desired texture, then render to a new WebGLRenderTarget using your custom shader:
// new render-to-texture scene
myScene = new THREE.Scene();
// you may need to modify these parameters
var renderTargetParams = {
minFilter:THREE.LinearFilter,
stencilBuffer:false,
depthBuffer:false
};
myImage = THREE.ImageUtils.loadTexture( 'path/to/texture.png',
new THREE.UVMapping(), function() { myCallbackFunction(); } );
imageWidth = myImage.image.width;
imageHeight = myImage.image.height;
// create buffer
myTexture = new THREE.WebGLRenderTarget( width, height, renderTargetParams );
// custom RTT materials
myUniforms = {
colorMap: { type: "t", value: myImage },
};
myTextureMat = new THREE.ShaderMaterial({
uniforms: myUniforms,
vertexShader: document.getElementById( 'my_custom_vs' ).textContent,
fragmentShader: document.getElementById( 'my_custom_fs' ).textContent
});
// Setup render-to-texture scene
myCamera = new THREE.OrthographicCamera( imageWidth / - 2,
imageWidth / 2,
imageHeight / 2,
imageHeight / - 2, -10000, 10000 );
var myTextureGeo = new THREE.PlaneGeometry( imageWidth, imageHeight );
myTextureMesh = new THREE.Mesh( myTextureGeo, myTextureMat );
myTextureMesh.position.z = -100;
myScene.add( myTextureMesh );
renderer.render( myScene, myCamera, myTexture, true );
Once you've rendered the new scene, myTexture
will be available for use as a texture in another material in your main scene. Note that you may want to trigger the first render
with the callback function in the loadTexture()
call, so that it won't try to render until the source image has loaded.