I am trying to use a linear regression on a group by pandas python dataframe:
This is the dataframe df:
group date value
A 01-02-201
def model(df, delta):
y = df[['value']].values
X = df[['date_delta']].values
return np.squeeze(LinearRegression().fit(X, y).predict(delta))
def group_predictions(df, date):
date = pd.to_datetime(date)
df.date = pd.to_datetime(df.date)
day = np.timedelta64(1, 'D')
mn = df.date.min()
df['date_delta'] = df.date.sub(mn).div(day)
dd = (date - mn) / day
return df.groupby('group').apply(model, delta=dd)
demo
group_predictions(df, '01-10-2016')
group
A 22.333333333333332
B 3.500000000000007
C 16.0
dtype: object
You're using LinearRegression
wrong.
model = LinearRegression()
fit
with
model.fit(X, y)
But all that does is set value in the object stored in model
There is no nice summary
method. There probably is one somewhere, but I know the one in statsmodels
soooo, see below
option 1
use statsmodels
instead
from statsmodels.formula.api import ols
for k, g in df_group:
model = ols('value ~ date_delta', g)
results = model.fit()
print(results.summary())
OLS Regression Results
==============================================================================
Dep. Variable: value R-squared: 0.652
Model: OLS Adj. R-squared: 0.565
Method: Least Squares F-statistic: 7.500
Date: Fri, 06 Jan 2017 Prob (F-statistic): 0.0520
Time: 10:48:17 Log-Likelihood: -9.8391
No. Observations: 6 AIC: 23.68
Df Residuals: 4 BIC: 23.26
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept 14.3333 1.106 12.965 0.000 11.264 17.403
date_delta 1.0000 0.365 2.739 0.052 -0.014 2.014
==============================================================================
Omnibus: nan Durbin-Watson: 1.393
Prob(Omnibus): nan Jarque-Bera (JB): 0.461
Skew: -0.649 Prob(JB): 0.794
Kurtosis: 2.602 Cond. No. 5.78
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
OLS Regression Results
==============================================================================
Dep. Variable: value R-squared: 0.750
Model: OLS Adj. R-squared: 0.500
Method: Least Squares F-statistic: 3.000
Date: Fri, 06 Jan 2017 Prob (F-statistic): 0.333
Time: 10:48:17 Log-Likelihood: -3.2171
No. Observations: 3 AIC: 10.43
Df Residuals: 1 BIC: 8.631
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept 15.5000 1.118 13.864 0.046 1.294 29.706
date_delta -1.5000 0.866 -1.732 0.333 -12.504 9.504
==============================================================================
Omnibus: nan Durbin-Watson: 3.000
Prob(Omnibus): nan Jarque-Bera (JB): 0.531
Skew: -0.707 Prob(JB): 0.767
Kurtosis: 1.500 Cond. No. 2.92
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
OLS Regression Results
==============================================================================
Dep. Variable: value R-squared: -inf
Model: OLS Adj. R-squared: -inf
Method: Least Squares F-statistic: -0.000
Date: Fri, 06 Jan 2017 Prob (F-statistic): nan
Time: 10:48:17 Log-Likelihood: 63.481
No. Observations: 2 AIC: -123.0
Df Residuals: 0 BIC: -125.6
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept 16.0000 inf 0 nan nan nan
date_delta -3.553e-15 inf -0 nan nan nan
==============================================================================
Omnibus: nan Durbin-Watson: 0.400
Prob(Omnibus): nan Jarque-Bera (JB): 0.333
Skew: 0.000 Prob(JB): 0.846
Kurtosis: 1.000 Cond. No. 2.62
==============================================================================
As a newbie I cannot comment so I will write it as a new answer. To solve an error:
Runtime Error: ValueError : Expected 2D array, got scalar array instead
you need to reshape delta value in line:
return np.squeeze(LinearRegression().fit(X, y).predict(np.array(delta).reshape(1, -1)))
Credit stays for you piRSquared
This might be a late response but I post the answer anyway should someone encounters the same problem. Actually, everything that was shown was correct except for the regression block. Here are the two problems with the implementation:
Please note that the model.fit(X, y)
gets an input X{array-like, sparse matrix} of shape (n_samples, n_features) for X. So both inputs for model.fit(X, y)
should be 2D. You can easily convert the 1D series to 2D by the reshape(-1, 1)
command.
The second problem is the regression fitting process itself:
y and X are not the input of model = LinearRegression(y, X)
but rather the input of `model.fit(X, y)'.
Here is the modification to the regression block:
for group in df_group.groups.keys():
df= df_group.get_group(group)
X = np.array(df[['date_delta']]).reshape(-1, 1) # note that series does not have reshape function, thus you need to convert to array
y = np.array(df.value).reshape(-1, 1)
model = LinearRegression() # <--- this does not accept (X, y)
results = model.fit(X, y)
print results.summary()