Python pandas linear regression groupby

前端 未结 3 1184
青春惊慌失措
青春惊慌失措 2021-01-31 11:48

I am trying to use a linear regression on a group by pandas python dataframe:

This is the dataframe df:

  group      date      value
    A     01-02-201         


        
相关标签:
3条回答
  • 2021-01-31 12:21

    New Answer

    def model(df, delta):
        y = df[['value']].values
        X = df[['date_delta']].values
        return np.squeeze(LinearRegression().fit(X, y).predict(delta))
    
    def group_predictions(df, date):
        date = pd.to_datetime(date)
        df.date = pd.to_datetime(df.date)
    
        day = np.timedelta64(1, 'D')
        mn = df.date.min()
        df['date_delta'] = df.date.sub(mn).div(day)
    
        dd = (date - mn) / day
    
        return df.groupby('group').apply(model, delta=dd)
    

    demo

    group_predictions(df, '01-10-2016')
    
    group
    A    22.333333333333332
    B     3.500000000000007
    C                  16.0
    dtype: object
    

    Old Answer

    You're using LinearRegression wrong.

    • you don't call it with the data and fit with the data. Just call the class like this
      • model = LinearRegression()
    • then fit with
      • model.fit(X, y)

    But all that does is set value in the object stored in model There is no nice summary method. There probably is one somewhere, but I know the one in statsmodels soooo, see below


    option 1
    use statsmodels instead

    from statsmodels.formula.api import ols
    
    for k, g in df_group:
        model = ols('value ~ date_delta', g)
        results = model.fit()
        print(results.summary())
    

                            OLS Regression Results                            
    ==============================================================================
    Dep. Variable:                  value   R-squared:                       0.652
    Model:                            OLS   Adj. R-squared:                  0.565
    Method:                 Least Squares   F-statistic:                     7.500
    Date:                Fri, 06 Jan 2017   Prob (F-statistic):             0.0520
    Time:                        10:48:17   Log-Likelihood:                -9.8391
    No. Observations:                   6   AIC:                             23.68
    Df Residuals:                       4   BIC:                             23.26
    Df Model:                           1                                         
    Covariance Type:            nonrobust                                         
    ==============================================================================
                     coef    std err          t      P>|t|      [95.0% Conf. Int.]
    ------------------------------------------------------------------------------
    Intercept     14.3333      1.106     12.965      0.000        11.264    17.403
    date_delta     1.0000      0.365      2.739      0.052        -0.014     2.014
    ==============================================================================
    Omnibus:                          nan   Durbin-Watson:                   1.393
    Prob(Omnibus):                    nan   Jarque-Bera (JB):                0.461
    Skew:                          -0.649   Prob(JB):                        0.794
    Kurtosis:                       2.602   Cond. No.                         5.78
    ==============================================================================
    
    Warnings:
    [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
                                OLS Regression Results                            
    ==============================================================================
    Dep. Variable:                  value   R-squared:                       0.750
    Model:                            OLS   Adj. R-squared:                  0.500
    Method:                 Least Squares   F-statistic:                     3.000
    Date:                Fri, 06 Jan 2017   Prob (F-statistic):              0.333
    Time:                        10:48:17   Log-Likelihood:                -3.2171
    No. Observations:                   3   AIC:                             10.43
    Df Residuals:                       1   BIC:                             8.631
    Df Model:                           1                                         
    Covariance Type:            nonrobust                                         
    ==============================================================================
                     coef    std err          t      P>|t|      [95.0% Conf. Int.]
    ------------------------------------------------------------------------------
    Intercept     15.5000      1.118     13.864      0.046         1.294    29.706
    date_delta    -1.5000      0.866     -1.732      0.333       -12.504     9.504
    ==============================================================================
    Omnibus:                          nan   Durbin-Watson:                   3.000
    Prob(Omnibus):                    nan   Jarque-Bera (JB):                0.531
    Skew:                          -0.707   Prob(JB):                        0.767
    Kurtosis:                       1.500   Cond. No.                         2.92
    ==============================================================================
    
    Warnings:
    [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
                                OLS Regression Results                            
    ==============================================================================
    Dep. Variable:                  value   R-squared:                        -inf
    Model:                            OLS   Adj. R-squared:                   -inf
    Method:                 Least Squares   F-statistic:                    -0.000
    Date:                Fri, 06 Jan 2017   Prob (F-statistic):                nan
    Time:                        10:48:17   Log-Likelihood:                 63.481
    No. Observations:                   2   AIC:                            -123.0
    Df Residuals:                       0   BIC:                            -125.6
    Df Model:                           1                                         
    Covariance Type:            nonrobust                                         
    ==============================================================================
                     coef    std err          t      P>|t|      [95.0% Conf. Int.]
    ------------------------------------------------------------------------------
    Intercept     16.0000        inf          0        nan           nan       nan
    date_delta -3.553e-15        inf         -0        nan           nan       nan
    ==============================================================================
    Omnibus:                          nan   Durbin-Watson:                   0.400
    Prob(Omnibus):                    nan   Jarque-Bera (JB):                0.333
    Skew:                           0.000   Prob(JB):                        0.846
    Kurtosis:                       1.000   Cond. No.                         2.62
    ==============================================================================
    
    0 讨论(0)
  • 2021-01-31 12:22

    As a newbie I cannot comment so I will write it as a new answer. To solve an error:

    Runtime Error: ValueError : Expected 2D array, got scalar array instead
    

    you need to reshape delta value in line:

    return np.squeeze(LinearRegression().fit(X, y).predict(np.array(delta).reshape(1, -1)))
    

    Credit stays for you piRSquared

    0 讨论(0)
  • 2021-01-31 12:36

    This might be a late response but I post the answer anyway should someone encounters the same problem. Actually, everything that was shown was correct except for the regression block. Here are the two problems with the implementation:

    • Please note that the model.fit(X, y) gets an input X{array-like, sparse matrix} of shape (n_samples, n_features) for X. So both inputs for model.fit(X, y) should be 2D. You can easily convert the 1D series to 2D by the reshape(-1, 1) command.

    • The second problem is the regression fitting process itself: y and X are not the input of model = LinearRegression(y, X) but rather the input of `model.fit(X, y)'.

    Here is the modification to the regression block:

    for group in df_group.groups.keys():
          df= df_group.get_group(group)
          X = np.array(df[['date_delta']]).reshape(-1, 1) # note that series does not have reshape function, thus you need to convert to array
          y = np.array(df.value).reshape(-1, 1) 
          model = LinearRegression()  # <--- this does not accept (X, y)
          results = model.fit(X, y)
          print results.summary()
    
    0 讨论(0)
提交回复
热议问题