I want to use a Structure like HashTable. Is there similar structure in Wolfram Mathematica?
I agree with Pillsy, but see also this answer:
Mathematica Downvalue Lhs
It includes a handy function for getting the keys of a hash table.
I've made Dictionary.m module, which contained:
DictHasKey = Function[
{
dict,
key
},
ValueQ[dict[key]]
]
DictAddKey = Function[
{
dict,
key,
value
},
If[
DictHasKey[dict,key],
Print["Warning, Dictionary already has key " <> ToString[key]]
];
dict[key] = value;
]
DictKeys = Function[
{
dict
},
res = {};
ForEach[DownValues[dict], Function[{dictKeyDescr},
res = Append[res, ((dictKeyDescr[[1]]) /. dict -> neverUsedSymbolWhatever)[[1, 1]]];
]];
res
]
DictValues = Function[
{
dict
},
res = {};
ForEach[DownValues[dict], Function[{dictKeyDescr},
res = Append[res, dictKeyDescr[[2]]];
]];
res
]
DictKeyValuePairs = Function[
{
dict
},
res = {};
ForEach[DownValues[dict], Function[{dictKeyDescr},
res = Append[res, {((dictKeyDescr[[1]]) /. dict -> neverUsedSymbolWhatever)[[1, 1]], dictKeyDescr[[2]]}];
]];
res
]
ForEach = Function[
{
list,
func
},
len = Length[list];
For[i = 1, i <= len, i++,
func[
list[[i]]
];
];
]
Update: Mathematica version 10 introduced the Association data structure (tutorial).
There are a number of possibilities. The easiest possibility, which works well if you don't need to add or delete keys from your table, or change their associated values, is to construct a list of rules with the key on the left-hand side and the value on the right-hand side, and use Dispatch
on it.
If you do need to change the entries in your table, you can use the DownValues
of a symbol as a hash table. This will support all the operations one commonly uses with hash tables. Here's the most straightforward way of doing that:
(* Set some values in your table.*)
In[1]:= table[a] = foo; table[b] = bar; table[c] = baz;
(* Test whether some keys are present. *)
In[2]:= {ValueQ[table[a]], ValueQ[table[d]]}
Out[2]:= {True, False}
(* Get a list of all keys and values, as delayed rules. *)
In[3]:= DownValues[table]
Out[3]:= {HoldPattern[table[a]] :> foo, HoldPattern[table[b]] :> bar,
HoldPattern[table[c]] :> baz}
(* Remove a key from your table. *)
In[4]:= Unset[table[b]]; ValueQ[table[b]]
Out[4]:= False
Mathematica 10 introduces Association, <| k -> v |>
,
<|a -> x, b -> y, c -> z|>
%[b]
y
Which is basically a wrapper for a list of rules: Convert a list of rules to an association:
Association[{a -> x, b -> y, c -> z}]
<|a -> x, b -> y, c -> z|>
Convert an association to a list of rules:
Normal[<|a -> x, b -> y, c -> z|>]
{a -> x, b -> y, c -> z}
I'd say the most similar structure you can get out of the box are sparse arrays.