I have a parquet table with one of the columns being
, array
>
Can run queries against this table in
There is no magic in the case of nested collection. Spark will handle the same way a RDD[(String, String)]
and a RDD[(String, Seq[String])]
.
Reading such nested collection from Parquet files can be tricky, though.
Let's take an example from the spark-shell
(1.3.1):
scala> import sqlContext.implicits._
import sqlContext.implicits._
scala> case class Inner(a: String, b: String)
defined class Inner
scala> case class Outer(key: String, inners: Seq[Inner])
defined class Outer
Write the parquet file:
scala> val outers = sc.parallelize(List(Outer("k1", List(Inner("a", "b")))))
outers: org.apache.spark.rdd.RDD[Outer] = ParallelCollectionRDD[0] at parallelize at <console>:25
scala> outers.toDF.saveAsParquetFile("outers.parquet")
Read the parquet file:
scala> import org.apache.spark.sql.catalyst.expressions.Row
import org.apache.spark.sql.catalyst.expressions.Row
scala> val dataFrame = sqlContext.parquetFile("outers.parquet")
dataFrame: org.apache.spark.sql.DataFrame = [key: string, inners: array<struct<a:string,b:string>>]
scala> val outers = dataFrame.map { row =>
| val key = row.getString(0)
| val inners = row.getAs[Seq[Row]](1).map(r => Inner(r.getString(0), r.getString(1)))
| Outer(key, inners)
| }
outers: org.apache.spark.rdd.RDD[Outer] = MapPartitionsRDD[8] at map at DataFrame.scala:848
The important part is row.getAs[Seq[Row]](1)
. The internal representation of a nested sequence of struct
is ArrayBuffer[Row]
, you could use any super-type of it instead of Seq[Row]
. The 1
is the column index in the outer row. I used the method getAs
here but there are alternatives in the latest versions of Spark. See the source code of the Row trait.
Now that you have a RDD[Outer]
, you can apply any wanted transformation or action.
// Filter the outers
outers.filter(_.inners.nonEmpty)
// Filter the inners
outers.map(outer => outer.copy(inners = outer.inners.filter(_.a == "a")))
Note that we used the spark-SQL library only to read the parquet file. You could for example select only the wanted columns directly on the DataFrame, before mapping it to a RDD.
dataFrame.select('col1, 'col2).map { row => ... }
Another approach would be using pattern matching like this:
val rdd: RDD[(String, List[(String, String)]] = dataFrame.map(_.toSeq.toList match {
case List(key: String, inners: Seq[Row]) => key -> inners.map(_.toSeq.toList match {
case List(a:String, b: String) => (a, b)
}).toList
})
You can pattern match directly on Row but it is likely to fail for a few reasons.
Above answers are all great answers and tackle this question from different sides; Spark SQL is also quite useful way to access nested data.
Here's example how to use explode() in SQL directly to query nested collection.
SELECT hholdid, tsp.person_seq_no
FROM ( SELECT hholdid, explode(tsp_ids) as tsp
FROM disc_mrt.unified_fact uf
)
tsp_ids is a nested of structs, which has many attributes, including person_seq_no which I'm selecting in the outer query above.
Above was tested in Spark 2.0. I did a small test and it doesn't work in Spark 1.6. This question was asked when Spark 2 wasn't around, so this answer adds nicely to the list of available options to deal with nested structures.
Have a look also on following JIRAs for Hive-compatible way to query nested data using LATERAL VIEW OUTER
syntax, since Spark 2.2 also supports OUTER
explode (e.g. when a nested collection is empty, but you still want to have attributes from a parent record):
Noticable not resolved JIRA on explode() for SQL access:
I'll give a Python-based answer since that's what I'm using. I think Scala has something similar.
The explode
function was added in Spark 1.4.0 to handle nested arrays in DataFrames, according to the Python API docs.
Create a test dataframe:
from pyspark.sql import Row
df = sqlContext.createDataFrame([Row(a=1, intlist=[1,2,3]), Row(a=2, intlist=[4,5,6])])
df.show()
## +-+--------------------+
## |a| intlist|
## +-+--------------------+
## |1|ArrayBuffer(1, 2, 3)|
## |2|ArrayBuffer(4, 5, 6)|
## +-+--------------------+
Use explode
to flatten the list column:
from pyspark.sql.functions import explode
df.select(df.a, explode(df.intlist)).show()
## +-+---+
## |a|_c0|
## +-+---+
## |1| 1|
## |1| 2|
## |1| 3|
## |2| 4|
## |2| 5|
## |2| 6|
## +-+---+