bug of autocorrelation plot in matplotlib‘s plt.acorr?

前端 未结 1 667
星月不相逢
星月不相逢 2021-01-31 06:25

I am plotting autocorrelation with python. I used three ways to do it: 1. pandas, 2. matplotlib, 3. statsmodels. I found the graph I got from matplotlib is not consistent with t

相关标签:
1条回答
  • 2021-01-31 06:41

    This is a result of different common definitions between statistics and signal processing. Basically, the signal processing definition assumes that you're going to handle the detrending. The statistical definition assumes that subtracting the mean is all the detrending you'll do, and does it for you.

    First off, let's demonstrate the problem with a stand-alone example:

    import numpy as np
    import matplotlib.pyplot as plt
    
    import pandas as pd
    from statsmodels.graphics import tsaplots
    
    def label(ax, string):
        ax.annotate(string, (1, 1), xytext=(-8, -8), ha='right', va='top',
                    size=14, xycoords='axes fraction', textcoords='offset points')
    
    np.random.seed(1977)
    data = np.random.normal(0, 1, 100).cumsum()
    
    fig, axes = plt.subplots(nrows=4, figsize=(8, 12))
    fig.tight_layout()
    
    axes[0].plot(data)
    label(axes[0], 'Raw Data')
    
    axes[1].acorr(data, maxlags=data.size-1)
    label(axes[1], 'Matplotlib Autocorrelation')
    
    tsaplots.plot_acf(data, axes[2])
    label(axes[2], 'Statsmodels Autocorrelation')
    
    pd.tools.plotting.autocorrelation_plot(data, ax=axes[3])
    label(axes[3], 'Pandas Autocorrelation')
    
    # Remove some of the titles and labels that were automatically added
    for ax in axes.flat:
        ax.set(title='', xlabel='')
    plt.show()
    

    enter image description here

    So, why the heck am I saying that they're all correct? They're clearly different!

    Let's write our own autocorrelation function to demonstrate what plt.acorr is doing:

    def acorr(x, ax=None):
        if ax is None:
            ax = plt.gca()
        autocorr = np.correlate(x, x, mode='full')
        autocorr /= autocorr.max()
    
        return ax.stem(autocorr)
    

    If we plot this with our data, we'll get a more-or-less identical result to plt.acorr (I'm leaving out properly labeling the lags, simply because I'm lazy):

    fig, ax = plt.subplots()
    acorr(data)
    plt.show()
    

    enter image description here

    This is a perfectly valid autocorrelation. It's all a matter of whether your background is signal processing or statistics.

    This is the definition used in signal processing. The assumption is that you're going to handle detrending your data (note the detrend kwarg in plt.acorr). If you want it detrended, you'll explictly ask for it (and probably do something better than just subtracting the mean), and otherwise it shouldn't be assumed.

    In statistics, simply subtracting the mean is assumed to be what you wanted to do for detrending.

    All of the other functions are subtracting the mean of the data before the correlation, similar to this:

    def acorr(x, ax=None):
        if ax is None:
            ax = plt.gca()
    
        x = x - x.mean()
    
        autocorr = np.correlate(x, x, mode='full')
        autocorr /= autocorr.max()
    
        return ax.stem(autocorr)
    
    fig, ax = plt.subplots()
    acorr(data)
    plt.show()
    

    enter image description here

    However, we still have one large difference. This one is purely a plotting convention.

    In most signal processing textbooks (that I've seen, anyway), the "full" autocorrelation is displayed, such that zero lag is in the center, and the result is symmetric on each side. R, on the other hand, has the very reasonable convention to display only one side of it. (After all, the other side is completely redundant.) The statistical plotting functions follow the R convetion, and plt.acorr follows what Matlab does, which is the opposite convention.

    Basically, you'd want this:

    def acorr(x, ax=None):
        if ax is None:
            ax = plt.gca()
    
        x = x - x.mean()
    
        autocorr = np.correlate(x, x, mode='full')
        autocorr = autocorr[x.size:]
        autocorr /= autocorr.max()
    
        return ax.stem(autocorr)
    
    fig, ax = plt.subplots()
    acorr(data)
    plt.show()
    

    enter image description here

    0 讨论(0)
提交回复
热议问题