I have another question that I was hoping someone could help me with.
I\'m using the Jensen-Shannon-Divergence to measure the similarity between two probability distribu
Note that the scipy entropy call below is the Kullback-Leibler divergence.
See: http://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
#!/usr/bin/env python
from scipy.stats import entropy
from numpy.linalg import norm
import numpy as np
def JSD(P, Q):
_P = P / norm(P, ord=1)
_Q = Q / norm(Q, ord=1)
_M = 0.5 * (_P + _Q)
return 0.5 * (entropy(_P, _M) + entropy(_Q, _M))
Also note that the test case in the Question looks erred?? The sum of the p distribution does not add to 1.0.
See: http://www.itl.nist.gov/div898/handbook/eda/section3/eda361.htm
A general version, for n probability distributions, in python
import numpy as np
from scipy.stats import entropy as H
def JSD(prob_distributions, weights, logbase=2):
# left term: entropy of misture
wprobs = weights * prob_distributions
mixture = wprobs.sum(axis=0)
entropy_of_mixture = H(mixture, base=logbase)
# right term: sum of entropies
entropies = np.array([H(P_i, base=logbase) for P_i in prob_distributions])
wentropies = weights * entropies
sum_of_entropies = wentropies.sum()
divergence = entropy_of_mixture - sum_of_entropies
return(divergence)
# From the original example with three distributions:
P_1 = np.array([1/2, 1/2, 0])
P_2 = np.array([0, 1/10, 9/10])
P_3 = np.array([1/3, 1/3, 1/3])
prob_distributions = np.array([P_1, P_2, P_3])
n = len(prob_distributions)
weights = np.empty(n)
weights.fill(1/n)
print(JSD(prob_distributions, weights))
#0.546621319446
Get some data for distributions with known divergence and compare your results against those known values.
BTW: the sum in KL_divergence may be rewritten using the zip built-in function like this:
sum(_p * log(_p / _q) for _p, _q in zip(p, q) if _p != 0)
This does away with lots of "noise" and is also much more "pythonic". The double comparison with 0.0
and 0
is not necessary.
Explicitly following the math in the Wikipedia article:
def jsdiv(P, Q):
"""Compute the Jensen-Shannon divergence between two probability distributions.
Input
-----
P, Q : array-like
Probability distributions of equal length that sum to 1
"""
def _kldiv(A, B):
return np.sum([v for v in A * np.log2(A/B) if not np.isnan(v)])
P = np.array(P)
Q = np.array(Q)
M = 0.5 * (P + Q)
return 0.5 * (_kldiv(P, M) +_kldiv(Q, M))
Since the Jensen-Shannon distance (distance.jensenshannon) has been included in Scipy 1.2
, the Jensen-Shannon divergence can be obtained as the square of the Jensen-Shannon distance:
from scipy.spatial import distance
distance.jensenshannon([1.0/10, 9.0/10, 0], [0, 1.0/10, 9.0/10]) ** 2
# 0.5306056938642212