I have a module A that does a basic map/reduce by taking data and sending it to modules B, C, D, etc for analysis and then joining their results together.
But it appears
is it possible to have a pool inside of a pool?
Yes, it is possible though it might not be a good idea unless you want to raise an army of zombies. From Python Process Pool non-daemonic?:
import multiprocessing.pool
from contextlib import closing
from functools import partial
class NoDaemonProcess(multiprocessing.Process):
# make 'daemon' attribute always return False
def _get_daemon(self):
return False
def _set_daemon(self, value):
pass
daemon = property(_get_daemon, _set_daemon)
# We sub-class multiprocessing.pool.Pool instead of multiprocessing.Pool
# because the latter is only a wrapper function, not a proper class.
class Pool(multiprocessing.pool.Pool):
Process = NoDaemonProcess
def foo(x, depth=0):
if depth == 0:
return x
else:
with closing(Pool()) as p:
return p.map(partial(foo, depth=depth-1), range(x + 1))
if __name__ == "__main__":
from pprint import pprint
pprint(foo(10, depth=2))
[[0],
[0, 1],
[0, 1, 2],
[0, 1, 2, 3],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5, 6],
[0, 1, 2, 3, 4, 5, 6, 7],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]
concurrent.futures supports it by default:
# $ pip install futures # on Python 2
from concurrent.futures import ProcessPoolExecutor as Pool
from functools import partial
def foo(x, depth=0):
if depth == 0:
return x
else:
with Pool() as p:
return list(p.map(partial(foo, depth=depth-1), range(x + 1)))
if __name__ == "__main__":
from pprint import pprint
pprint(foo(10, depth=2))
It produces the same output.
Is it possible to parallelize these jobs some other way?
Yes. For example, look at how celery allows to create a complex workflow.