I\'m converting a large textfile to a hdf storage in hopes of a faster data access. The conversion works allright, however reading from the csv file is not done in parallel. It
Yes, dask.dataframe can read in parallel. However you're running into two problems:
By default dask.dataframe parallelizes with threads because most of Pandas can run in parallel in multiple threads (releases the GIL). Pandas.read_csv is an exception, especially if your resulting dataframes use object dtypes for text
Writing to a single HDF file will force sequential computation (it's very hard to write to a single file in parallel.)
Today I would avoid HDF and use Parquet instead. I would probably use the multiprocessing or dask.distributed schedulers to avoid GIL issues on a single machine. The combination of these two should give you full linear scaling.
from dask.distributed import Client
client = Client()
df = dask.dataframe.read_csv(...)
df.to_parquet(...)
Because your dataset likely fits in memory, use dask.dataframe.read_csv to load in parallel with multiple processes, then switch immediately to Pandas.
import dask.dataframe as ddf
import dask.multiprocessing
df = ddf.read_csv("data/Measurements*.csv", # read in parallel
sep=';',
parse_dates=["DATETIME"],
blocksize=1000000,
)
df = df.compute(get=dask.multiprocessing.get) # convert to pandas
df['Type'] = df['Type'].astype('category')
df['Condition'] = df['Condition'].astype('category')
df.to_hdf('data/data.hdf', 'Measurements', format='table', mode='w')
Piggybacking off of @MRocklin's answer, in newer versions of dask, you can use df.compute(scheduler='processes')
or df.compute(scheduler='threads')
to convert to pandas using multiprocessing or multithreading:
from dask import dataframe as ddf
df = ddf.read_csv("data/Measurements*.csv",
sep=';',
parse_dates=["DATETIME"],
blocksize=1000000,
)
df = df.compute(scheduler='processes') # convert to pandas
df['Type'] = df['Type'].astype('category')
df['Condition'] = df['Condition'].astype('category')
df.to_hdf('data/data.hdf', 'Measurements', format='table', mode='w')