This is the example of my dataset.
>>> user1 = pd.read_csv(\'dataset/1.csv\')
>>> print(user1)
0 0.69464 3.1735 7.5048
0 0.0306
user1 = pd.read_csv('dataset/1.csv', names=['Time', 'X', 'Y', 'Z'])
names parameter in read_csv function is used to define column names. If you pass extra name in this list, it will add another new column with that name with NaN values.
header=None is used to trim column names is already exists in CSV file.
I'd do it like this:
colnames=['TIME', 'X', 'Y', 'Z']
user1 = pd.read_csv('dataset/1.csv', names=colnames, header=None)
If we are directly use data from csv it will give combine data based on comma separation value as it is .csv file.
user1 = pd.read_csv('dataset/1.csv')
If you want to add column names using pandas, you have to do something like this. But below code will not show separate header for your columns.
col_names=['TIME', 'X', 'Y', 'Z']
user1 = pd.read_csv('dataset/1.csv', names=col_names)
To solve above problem we have to add extra filled which is supported by pandas, It is header=None
user1 = pd.read_csv('dataset/1.csv', names=col_names, header=None)
we can do it with a single line of code.
user1 = pd.read_csv('dataset/1.csv', names=['TIME', 'X', 'Y', 'Z'], header=None)