Grouping data by value ranges

后端 未结 3 1059
再見小時候
再見小時候 2021-01-30 18:29

I have a csv file that shows parts on order. The columns include days late, qty and commodity.

I need to group the data by days late and commodity with a sum of the qty.

相关标签:
3条回答
  • 2021-01-30 19:06

    Suppose you start with this data:

    df = pd.DataFrame({'ID': ('STRSUB BOTDWG'.split())*4,
                       'Days Late': [60, 60, 50, 50, 20, 20, 10, 10],
                       'quantity': [56, 20, 60, 67, 74, 87, 40, 34]})
    #    Days Late      ID  quantity
    # 0         60  STRSUB        56
    # 1         60  BOTDWG        20
    # 2         50  STRSUB        60
    # 3         50  BOTDWG        67
    # 4         20  STRSUB        74
    # 5         20  BOTDWG        87
    # 6         10  STRSUB        40
    # 7         10  BOTDWG        34
    

    Then you can find the status category using pd.cut. Note that by default, pd.cut splits the Series df['Days Late'] into categories which are half-open intervals, (-1, 14], (14, 35], (35, 56], (56, 365]:

    df['status'] = pd.cut(df['Days Late'], bins=[-1, 14, 35, 56, 365], labels=False)
    labels = np.array('White Yellow Amber Red'.split())
    df['status'] = labels[df['status']]
    del df['Days Late']
    print(df)
    #        ID  quantity  status
    # 0  STRSUB        56     Red
    # 1  BOTDWG        20     Red
    # 2  STRSUB        60   Amber
    # 3  BOTDWG        67   Amber
    # 4  STRSUB        74  Yellow
    # 5  BOTDWG        87  Yellow
    # 6  STRSUB        40   White
    # 7  BOTDWG        34   White
    

    Now use pivot to get the DataFrame in the desired form:

    df = df.pivot(index='ID', columns='status', values='quantity')
    

    and use reindex to obtain the desired order for the rows and columns:

    df = df.reindex(columns=labels[::-1], index=df.index[::-1])
    

    Thus,

    import numpy as np
    import pandas as pd
    
    df = pd.DataFrame({'ID': ('STRSUB BOTDWG'.split())*4,
                       'Days Late': [60, 60, 50, 50, 20, 20, 10, 10],
                       'quantity': [56, 20, 60, 67, 74, 87, 40, 34]})
    df['status'] = pd.cut(df['Days Late'], bins=[-1, 14, 35, 56, 365], labels=False)
    labels = np.array('White Yellow Amber Red'.split())
    df['status'] = labels[df['status']]
    del df['Days Late']
    df = df.pivot(index='ID', columns='status', values='quantity')
    df = df.reindex(columns=labels[::-1], index=df.index[::-1])
    print(df)
    

    yields

            Red  Amber  Yellow  White
    ID                               
    STRSUB   56     60      74     40
    BOTDWG   20     67      87     34
    
    0 讨论(0)
  • 2021-01-30 19:14

    You can create a column in your DataFrame based on your Days Late column by using the map or apply functions as follows. Let's first create some sample data.

    df = pandas.DataFrame({ 'ID': 'foo,bar,foo,bar,foo,bar,foo,foo'.split(','),
                            'Days Late': numpy.random.randn(8)*20+30})
    
       Days Late   ID
    0  30.746244  foo
    1  16.234267  bar
    2  14.771567  foo
    3  33.211626  bar
    4   3.497118  foo
    5  52.482879  bar
    6  11.695231  foo
    7  47.350269  foo
    

    Create a helper function to transform the data of the Days Late column and add a column called Code.

    def days_late_xform(dl):
        if dl > 56: return 'Red'
        elif 35 < dl <= 56: return 'Amber'
        elif 14 < dl <= 35: return 'Yellow'
        elif 0 < dl <= 14: return 'White'
        else: return 'None'
    
    df["Code"] = df['Days Late'].map(days_late_xform)
    
       Days Late   ID    Code
    0  30.746244  foo  Yellow
    1  16.234267  bar  Yellow
    2  14.771567  foo  Yellow
    3  33.211626  bar  Yellow
    4   3.497118  foo   White
    5  52.482879  bar   Amber
    6  11.695231  foo   White
    7  47.350269  foo   Amber
    

    Lastly, you can use groupby to aggregate by the ID and Code columns, and get the counts of the groups as follows:

    g = df.groupby(["ID","Code"]).size()
    print g
    
    ID   Code
    bar  Amber     1
         Yellow    2
    foo  Amber     1
         White     2     
         Yellow    2
    
    df2 = g.unstack()
    print df2
    
    Code  Amber  White  Yellow
    ID
    bar       1    NaN       2
    foo       1      2       2
    
    0 讨论(0)
  • 2021-01-30 19:24

    I know this is coming a bit late, but I had the same problem as you and wanted to share the function np.digitize. It sounds like exactly what you want.

    a = np.random.randint(0, 100, 50)
    grps = np.arange(0, 100, 10)
    grps2 = [1, 20, 25, 40]
    print a
    [35 76 83 62 57 50 24  0 14 40 21  3 45 30 79 32 29 80 90 38  2 77 50 73 51
     71 29 53 76 16 93 46 14 32 44 77 24 95 48 23 26 49 32 15  2 33 17 88 26 17]
    
    print np.digitize(a, grps)
    [ 4  8  9  7  6  6  3  1  2  5  3  1  5  4  8  4  3  9 10  4  1  8  6  8  6
      8  3  6  8  2 10  5  2  4  5  8  3 10  5  3  3  5  4  2  1  4  2  9  3  2]
    
    print np.digitize(a, grps2)
    [3 4 4 4 4 4 2 0 1 4 2 1 4 3 4 3 3 4 4 3 1 4 4 4 4 4 3 4 4 1 4 4 1 3 4 4 2
     4 4 2 3 4 3 1 1 3 1 4 3 1]
    
    0 讨论(0)
提交回复
热议问题