When should we use Radix sort?

前端 未结 11 1852
孤街浪徒
孤街浪徒 2021-01-30 16:27

It seems Radix sort has a very good average case performance, i.e. O(kN): http://en.wikipedia.org/wiki/Radix_sort

Yet it seems like most people are still using

相关标签:
11条回答
  • 2021-01-30 16:56

    Quick sort has an average of O(N logN), but it also has a worst case of O(N^2), so even due in most practical cases it wont get to N^2, there is always the risk that the input will be in "bad order" for you. This risk doesn't exist in radix sort. I think this gives a great advantage to radix sort.

    0 讨论(0)
  • 2021-01-30 17:00

    Edited according to your comments:

    • Radix sort only applies to integers, fixed size strings, floating points and to "less than", "greater than" or "lexicographic order" comparison predicates, whereas comparison sorts can accommodate different orders.
    • k can be greater than log N.
    • Quick sort can be done in place, radix sort becomes less efficient.
    0 讨论(0)
  • 2021-01-30 17:03

    Radix sort is harder to generalize than most other sorting algorithms. It requires fixed size keys, and some standard way of breaking the keys into pieces. Thus it never finds its way into libraries.

    0 讨论(0)
  • 2021-01-30 17:03

    when n > 128, we should use RadixSort

    when sort int32s, I choose radix 256, so k = log(256, 2^32) = 4, which is significant smaller than log(2, n)

    and in my test, radix sort is 7 times faster than quicksort in the best case.

    public class RadixSort {
        private static final int radix=256, shifts[]={8,16,24}, mask=radix-1;
        private final int bar[]=new int[radix];
        private int s[] = new int[65536];//不使用额外的数组t,提高cpu的cache命中率
    
        public void ensureSort(int len){
            if(s.length < len)
                s = new int[len];
        }   
    
        public void sort(int[] a){
            int n=a.length;
            ensureSort(n);
            for(int i=0;i<radix;i++)bar[i]=0;
            for(int i=0;i<n;i++)bar[a[i]&mask]++;//bar存放了桶内元素数量
            for(int i=1;i<radix;i++)bar[i]+=bar[i-1];//bar存放了桶内的各个元素在排序结果中的最大下标+1
            for(int i=0;i<n;i++)s[--bar[a[i]&mask]]=a[i];//对桶内元素,在bar中找到下标x=bar[slot]-1, 另s[x]=a[i](同时--bar[slot]将下标前移,供桶内其它元素使用)
    
            for(int i=0;i<radix;i++)bar[i]=0;
            for(int i=0;i<n;i++)bar[(s[i]>>8)&mask]++;
            for(int i=1;i<radix;i++)bar[i]+=bar[i-1];
            for(int i=n-1;i>=0;i--)a[--bar[(s[i]>>8)&mask]]=s[i];//同一个桶内的元素,低位已排序,而放入t中时是从t的大下标向小下标放入的,所以应该逆序遍历s[i]来保证原有的顺序不变
    
            for(int i=0;i<radix;i++)bar[i]=0;
            for(int i=0;i<n;i++)bar[(a[i]>>16)&mask]++;
            for(int i=1;i<radix;i++)bar[i]+=bar[i-1];
            for(int i=n-1;i>=0;i--)s[--bar[(a[i]>>16)&mask]]=a[i];//同一个桶内的元素,低位已排序,而放入t中时是从t的大下标向小下标放入的,所以应该逆序遍历s[i]来保证原有的顺序不变
    
            for(int i=0;i<radix;i++)bar[i]=0;
            for(int i=0;i<n;i++)bar[(s[i]>>24)&mask]++;
            for(int i=129;i<radix;i++)bar[i]+=bar[i-1];//bar[128~255]是负数,比正数小
            bar[0] += bar[255];
            for(int i=1;i<128;i++)bar[i]+=bar[i-1];     
            for(int i=n-1;i>=0;i--)a[--bar[(s[i]>>24)&mask]]=s[i];//同一个桶内的元素,低位已排序,而放入t中时是从t的大下标向小下标放入的,所以应该逆序遍历s[i]来保证原有的顺序不变      
        }
    }
    
    0 讨论(0)
  • 2021-01-30 17:05

    Here's a link which compares quicksort and radixsort:

    Is radix sort faster than quicksort for integer arrays? (yes it is, 2-3x)

    Here's another link which analyzes running times of several algorithms:

    A Question of Sorts:

    Which is faster on the same data; an O(n) sort or an O(nLog(n)) sort?

    Answer: It depends. It depends on the amount of data being sorted. It depends on the hardware its being run on, and it depends on the implementation of the algorithms.

    0 讨论(0)
提交回复
热议问题